16 research outputs found
Optimal Reissue Policies for Reducing Tail Latency
Interactive services send redundant requests to multiple different replicas to meet stringent tail latency requirements. These addi- tional (reissue) requests mitigate the impact of non-deterministic delays within the system and thus increase the probability of re- ceiving an on-time response. There are two existing approaches of using reissue requests to reduce tail latency. (1) Reissue requests immediately to one or more replicas, which multiplies the load and runs the risk of overloading the system. (2) Reissue requests if not completed after a fixed delay. The delay helps to bound the number of extra reissue requests, but it also reduces the chance for those requests to respond before a tail latency target. We introduce a new family of reissue policies, Single-Time / Random ( SingleR ), that reissue requests after a delay d with probability q . SingleR employs randomness to bound the reissue rate, while allowing requests to be reissued early enough so they have sufficient time to respond, exploiting the benefits of both immediate and delayed reissue of prior work. We formally prove, within a simplified analytical model, that SingleR is optimal even when compared to more complex policies that reissue multiple times. To use SingleR for interactive services, we provide efficient algorithms for calculating optimal reissue delay and probability from response time logs through data-driven approach. We apply itera- tive adaptation for systems with load-dependent queuing delays. The key advantage of this data-driven approach is its wide applica- bility and effectiveness to systems with various design choices and workload properties. We evaluated SingleR policies thoroughly. We use simulation to illustrate its internals and demonstrate its robustness to a wide range of workloads. We conduct system experiments on the Re- dis key-value store and Lucene search server. The results show that for utilizations ranging from 40 - 60% , SingleR reduces the 99 th-percentile latency of Redis by 30 - 70% by reissuing only 2% of requests, and the 99 th-percentile latency of Lucene by 15 - 25% by reissuing 1% only
Distributed transactional reads: the strong, the quick, the fresh & the impossible
International audienceThis paper studies the costs and trade-offs of providing transactional consistent reads in a distributed storage system. We identify the following dimensions: read consistency, read delay (latency), and data freshness. We show that there is a three-way trade-off between them, which can be summarised as follows: (i) it is not possible to ensure at the same time order-preserving (e.g., causally-consistent) or atomic reads, Minimal Delay, and maximal freshness; thus, reading data that is the most fresh without delay is possible only in a weakly-isolated mode; (ii) to ensure atomic or order-preserving reads at Minimal Delay imposes to read data from the past (not fresh); (iii) however, order-preserving minimal-delay reads can be fresher than atomic; (iv) reading atomic or order-preserving data at maximal freshness may block reads or writes indefinitely. Our impossibility results hold independently of other features of the database, such as update semantics (totally ordered or not) or data model (structured or unstructured). Guided by these results, we modify an existing protocol to ensure minimal-delay reads (at the cost of freshness) under atomic-visibility and causally-consistent semantics. Our experimental evaluation supports the theoretical results
Aging impairs the osteocytic regulation of collagen integrity and bone quality
Poor bone quality is a major factor in skeletal fragility in elderly individuals. The molecular mechanisms that establish and maintain bone quality, independent of bone mass, are unknown but are thought to be primarily determined by osteocytes. We hypothesize that the age-related decline in bone quality results from the suppression of osteocyte perilacunar/canalicular remodeling (PLR), which maintains bone material properties. We examined bones from young and aged mice with osteocyte-intrinsic repression of TGFβ signaling (TβRI
Multi-ethnic genome-wide association study for atrial fibrillation
Atrial fibrillation (AF) affects more than 33 million individuals worldwide and has a complex heritability. We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF
Dynamic HTML in Action
https://digitalcommons.cedarville.edu/alum_books/1479/thumbnail.jp
Recommended from our members
Chronic kidney disease and aging differentially diminish bone material and microarchitecture in C57Bl/6 mice.
Chronic kidney disease (CKD) is a common disease of aging and increases fracture risk over advanced age alone. Aging and CKD differently impair bone turnover and mineralization. We thus hypothesize that the loss of bone quality would be greatest with the combination of advanced age and CKD. We evaluated bone from young adult (6 mo.), middle-age (18 mo.), and old (24 mo.) male C57Bl/6 mice three months following either 5/6th nephrectomy, to induce CKD, or Sham procedures. CKD exacerbated losses of cortical and trabecular microarchitecture associated with aging. Aging and CKD each resulted in thinner, more porous cortices and fewer and thinner trabeculae. Bone material quality was also reduced with CKD, and these changes to bone material were distinct from those due to age. Aging reduced whole-bone flexural strength and modulus, micrometer-scale nanoindentation modulus, and nanometer-scale tissue and collagen strain (small-angle x-ray scattering [SAXS]. By contrast, CKD reduced work to fracture and variation in bone tissue modulus and composition (Raman spectroscopy), and increased percent collagen strain. The increased collagen strain burden was associated with loss of toughness in CKD. In addition, osteocyte lacunae became smaller, sparser, and more disordered with age for Sham mice, yet these age-related changes were not clearly observed in CKD. However, for CKD, larger lacunae positively correlated with increased serum phosphate levels, suggesting that osteocytes play a role in systemic mineral homeostasis. This work demonstrates that CKD reduces bone quality, including microarchitecture and bone material properties, and that loss of bone quality with age is compounded by CKD. These findings may help reconcile why bone mass does not consistently predict fracture in the CKD population, as well as why older individuals with CKD are at high risk of fragility
Aging impairs the osteocytic regulation of collagen integrity and bone quality.
Poor bone quality is a major factor in skeletal fragility in elderly individuals. The molecular mechanisms that establish and maintain bone quality, independent of bone mass, are unknown but are thought to be primarily determined by osteocytes. We hypothesize that the age-related decline in bone quality results from the suppression of osteocyte perilacunar/canalicular remodeling (PLR), which maintains bone material properties. We examined bones from young and aged mice with osteocyte-intrinsic repression of TGFβ signaling (TβRIIocy-/-) that suppresses PLR. The control aged bone displayed decreased TGFβ signaling and PLR, but aging did not worsen the existing PLR suppression in male TβRIIocy-/- bone. This relationship impacted the behavior of collagen material at the nanoscale and tissue scale in macromechanical tests. The effects of age on bone mass, density, and mineral material behavior were independent of osteocytic TGFβ. We determined that the decline in bone quality with age arises from the loss of osteocyte function and the loss of TGFβ-dependent maintenance of collagen integrity
Recommended from our members
Chronic kidney disease and aging differentially diminish bone material and microarchitecture in C57Bl/6 mice.
Chronic kidney disease (CKD) is a common disease of aging and increases fracture risk over advanced age alone. Aging and CKD differently impair bone turnover and mineralization. We thus hypothesize that the loss of bone quality would be greatest with the combination of advanced age and CKD. We evaluated bone from young adult (6 mo.), middle-age (18 mo.), and old (24 mo.) male C57Bl/6 mice three months following either 5/6th nephrectomy, to induce CKD, or Sham procedures. CKD exacerbated losses of cortical and trabecular microarchitecture associated with aging. Aging and CKD each resulted in thinner, more porous cortices and fewer and thinner trabeculae. Bone material quality was also reduced with CKD, and these changes to bone material were distinct from those due to age. Aging reduced whole-bone flexural strength and modulus, micrometer-scale nanoindentation modulus, and nanometer-scale tissue and collagen strain (small-angle x-ray scattering [SAXS]. By contrast, CKD reduced work to fracture and variation in bone tissue modulus and composition (Raman spectroscopy), and increased percent collagen strain. The increased collagen strain burden was associated with loss of toughness in CKD. In addition, osteocyte lacunae became smaller, sparser, and more disordered with age for Sham mice, yet these age-related changes were not clearly observed in CKD. However, for CKD, larger lacunae positively correlated with increased serum phosphate levels, suggesting that osteocytes play a role in systemic mineral homeostasis. This work demonstrates that CKD reduces bone quality, including microarchitecture and bone material properties, and that loss of bone quality with age is compounded by CKD. These findings may help reconcile why bone mass does not consistently predict fracture in the CKD population, as well as why older individuals with CKD are at high risk of fragility
Recommended from our members
Chronic kidney disease and aging differentially diminish bone material and microarchitecture in C57Bl/6 mice.
Chronic kidney disease (CKD) is a common disease of aging and increases fracture risk over advanced age alone. Aging and CKD differently impair bone turnover and mineralization. We thus hypothesize that the loss of bone quality would be greatest with the combination of advanced age and CKD. We evaluated bone from young adult (6 mo.), middle-age (18 mo.), and old (24 mo.) male C57Bl/6 mice three months following either 5/6th nephrectomy, to induce CKD, or Sham procedures. CKD exacerbated losses of cortical and trabecular microarchitecture associated with aging. Aging and CKD each resulted in thinner, more porous cortices and fewer and thinner trabeculae. Bone material quality was also reduced with CKD, and these changes to bone material were distinct from those due to age. Aging reduced whole-bone flexural strength and modulus, micrometer-scale nanoindentation modulus, and nanometer-scale tissue and collagen strain (small-angle x-ray scattering [SAXS]. By contrast, CKD reduced work to fracture and variation in bone tissue modulus and composition (Raman spectroscopy), and increased percent collagen strain. The increased collagen strain burden was associated with loss of toughness in CKD. In addition, osteocyte lacunae became smaller, sparser, and more disordered with age for Sham mice, yet these age-related changes were not clearly observed in CKD. However, for CKD, larger lacunae positively correlated with increased serum phosphate levels, suggesting that osteocytes play a role in systemic mineral homeostasis. This work demonstrates that CKD reduces bone quality, including microarchitecture and bone material properties, and that loss of bone quality with age is compounded by CKD. These findings may help reconcile why bone mass does not consistently predict fracture in the CKD population, as well as why older individuals with CKD are at high risk of fragility
Recommended from our members
Impact of extended-course oral nirmatrelvir/ritonavir (Paxlovid) in established Long COVID: Case series and research considerations
BACKGROUND: Prior case series suggest that a 5-day course of oral Paxlovid (nirmatrelvir/ritonavir) benefits some people with Long COVID, within and/or outside of the context of an acute reinfection. To the best of our knowledge, there have been no prior case series of people with Long COVID who have attempted longer courses of nirmatrelvir/ritonavir. METHODS: We documented a case series of 13 individuals with Long COVID who initiated extended courses (>5 days; range: 7.5-30 days) of oral nirmatrelvir/ritonavir outside (n=11) of and within (n=2) the context of an acute SARS-CoV-2 infection. Participants reported on symptoms and health experiences before, during, and after their use of nirmatrelvir/ritonavir. RESULTS: Among those who took a long course of nirmatrelvir/ritonavir outside of the context of an acute infection, some experienced a meaningful reduction in symptoms, although not all benefits persisted; others experienced no effect on symptoms. One participant reported intense stomach pain that precluded her from continuing her course. Among the two participants who took a long course of nirmatrelvir/ritonavir within the context of an acute reinfection, both eventually returned to their pre-re-infection baseline. DISCUSSION: Long courses of nirmatrelvir/ritonavir may have meaningful benefits for some people with Long COVID but not others. We encourage researchers to study who, how, and why nirmatrelvir/ritonavir benefits some and what course length is most effective, with the goal of informing clinical recommendations for using nirmatrelvir/ritonavir and/or other antivirals as a potential treatment for Long COVID