16 research outputs found

    Optimal Reissue Policies for Reducing Tail Latency

    Get PDF
    Interactive services send redundant requests to multiple different replicas to meet stringent tail latency requirements. These addi- tional (reissue) requests mitigate the impact of non-deterministic delays within the system and thus increase the probability of re- ceiving an on-time response. There are two existing approaches of using reissue requests to reduce tail latency. (1) Reissue requests immediately to one or more replicas, which multiplies the load and runs the risk of overloading the system. (2) Reissue requests if not completed after a fixed delay. The delay helps to bound the number of extra reissue requests, but it also reduces the chance for those requests to respond before a tail latency target. We introduce a new family of reissue policies, Single-Time / Random ( SingleR ), that reissue requests after a delay d with probability q . SingleR employs randomness to bound the reissue rate, while allowing requests to be reissued early enough so they have sufficient time to respond, exploiting the benefits of both immediate and delayed reissue of prior work. We formally prove, within a simplified analytical model, that SingleR is optimal even when compared to more complex policies that reissue multiple times. To use SingleR for interactive services, we provide efficient algorithms for calculating optimal reissue delay and probability from response time logs through data-driven approach. We apply itera- tive adaptation for systems with load-dependent queuing delays. The key advantage of this data-driven approach is its wide applica- bility and effectiveness to systems with various design choices and workload properties. We evaluated SingleR policies thoroughly. We use simulation to illustrate its internals and demonstrate its robustness to a wide range of workloads. We conduct system experiments on the Re- dis key-value store and Lucene search server. The results show that for utilizations ranging from 40 - 60% , SingleR reduces the 99 th-percentile latency of Redis by 30 - 70% by reissuing only 2% of requests, and the 99 th-percentile latency of Lucene by 15 - 25% by reissuing 1% only

    Distributed transactional reads: the strong, the quick, the fresh & the impossible

    Get PDF
    International audienceThis paper studies the costs and trade-offs of providing transactional consistent reads in a distributed storage system. We identify the following dimensions: read consistency, read delay (latency), and data freshness. We show that there is a three-way trade-off between them, which can be summarised as follows: (i) it is not possible to ensure at the same time order-preserving (e.g., causally-consistent) or atomic reads, Minimal Delay, and maximal freshness; thus, reading data that is the most fresh without delay is possible only in a weakly-isolated mode; (ii) to ensure atomic or order-preserving reads at Minimal Delay imposes to read data from the past (not fresh); (iii) however, order-preserving minimal-delay reads can be fresher than atomic; (iv) reading atomic or order-preserving data at maximal freshness may block reads or writes indefinitely. Our impossibility results hold independently of other features of the database, such as update semantics (totally ordered or not) or data model (structured or unstructured). Guided by these results, we modify an existing protocol to ensure minimal-delay reads (at the cost of freshness) under atomic-visibility and causally-consistent semantics. Our experimental evaluation supports the theoretical results

    Aging impairs the osteocytic regulation of collagen integrity and bone quality

    Get PDF
    Poor bone quality is a major factor in skeletal fragility in elderly individuals. The molecular mechanisms that establish and maintain bone quality, independent of bone mass, are unknown but are thought to be primarily determined by osteocytes. We hypothesize that the age-related decline in bone quality results from the suppression of osteocyte perilacunar/canalicular remodeling (PLR), which maintains bone material properties. We examined bones from young and aged mice with osteocyte-intrinsic repression of TGFβ signaling (TβRI

    Multi-ethnic genome-wide association study for atrial fibrillation

    Get PDF
    Atrial fibrillation (AF) affects more than 33 million individuals worldwide and has a complex heritability. We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF

    Dynamic HTML in Action

    No full text
    https://digitalcommons.cedarville.edu/alum_books/1479/thumbnail.jp

    Aging impairs the osteocytic regulation of collagen integrity and bone quality.

    Get PDF
    Poor bone quality is a major factor in skeletal fragility in elderly individuals. The molecular mechanisms that establish and maintain bone quality, independent of bone mass, are unknown but are thought to be primarily determined by osteocytes. We hypothesize that the age-related decline in bone quality results from the suppression of osteocyte perilacunar/canalicular remodeling (PLR), which maintains bone material properties. We examined bones from young and aged mice with osteocyte-intrinsic repression of TGFβ signaling (TβRIIocy-/-) that suppresses PLR. The control aged bone displayed decreased TGFβ signaling and PLR, but aging did not worsen the existing PLR suppression in male TβRIIocy-/- bone. This relationship impacted the behavior of collagen material at the nanoscale and tissue scale in macromechanical tests. The effects of age on bone mass, density, and mineral material behavior were independent of osteocytic TGFβ. We determined that the decline in bone quality with age arises from the loss of osteocyte function and the loss of TGFβ-dependent maintenance of collagen integrity
    corecore