4 research outputs found

    Time Restricted Eating: A Dietary Strategy to Prevent and Treat Metabolic Disturbances

    No full text
    Time-restricted eating (TRE), a dietary approach limiting the daily eating window, has attracted increasing attention in media and research. The eating behavior in our modern society is often characterized by prolonged and erratic daily eating patterns, which might be associated with increased risk of obesity, diabetes, and cardiovascular diseases. In contrast, recent evidence suggests that TRE might support weight loss, improve cardiometabolic health, and overall wellbeing, but the data are controversial. The present work reviews how TRE affects glucose and lipid metabolism based on clinical trials published until June 2021. A range of trials demonstrated that TRE intervention lowered fasting and postprandial glucose levels in response to a standard meal or oral glucose tolerance test, as well as mean 24-h glucose and glycemic excursions assessed using continuous glucose monitoring. In addition, fasting insulin decreases and improvement of insulin sensitivity were demonstrated. These changes were often accompanied by the decrease of blood triglyceride and cholesterol levels. However, a number of studies found that TRE had either adverse or no effects on glycemic and lipid traits, which might be explained by the different study designs (i.e., fasting/eating duration, daytime of eating, changes of calorie intake, duration of intervention) and study subject cohorts (metabolic status, age, gender, chronotype, etc.). To summarize, TRE represents an attractive and easy-to-adapt dietary strategy for the prevention and therapy of glucose and lipid metabolic disturbances. However, carefully controlled future TRE studies are needed to confirm these effects to understand the underlying mechanisms and assess the applicability of personalized interventions

    Effects of Early vs. Late Time-Restricted Eating on Cardiometabolic Health, Inflammation, and Sleep in Overweight and Obese Women: A Study Protocol for the ChronoFast Trial

    No full text
    BACKGROUND: Time-restricted eating is a promising dietary strategy for weight loss, glucose and lipid metabolism improvements, and overall well-being. However, human studies demonstrated contradictory results for the restriction of food intake to the beginning (early TRE, eTRE) or to the end of the day (late TRE, lTRE) suggesting that more carefully controlled studies are needed. OBJECTIVE: The aim of the ChronoFast trial study is to determine whether eTRE or lTRE is a better dietary approach to improve cardiometabolic health upon minimized calorie deficits and nearly stable body weight. METHODS: Here, we present the study protocol of the randomized cross-over ChronoFast clinical trial comparing effects of 2 week eTRE (8:00 to 16:00 h) and lTRE (13:00 to 21:00 h) on insulin sensitivity and other glycemic traits, blood lipids, inflammation, and sleep quality in 30 women with overweight or obesity and increased risk of type 2 diabetes. To ensure timely compliance and unchanged dietary composition, and to minimize possible calorie deficits, real-time monitoring of dietary intake and body weight using a smartphone application, and extensive nutritional counseling are performed. Continuous glucose monitoring, oral glucose tolerance test, 24 h activity tracking, questionnaires, and gene expression analysis in adipose tissue and blood monocytes will be used for assessment of study outcomes. DISCUSSION: The trial will determine whether eTRE or lTRE is more effective to improve cardiometabolic health, elucidate underlying mechanisms, and contribute to the development of recommendations for medical practice and the wider population

    Validation of a Smartphone Application for the Assessment of Dietary Compliance in an Intermittent Fasting Trial

    No full text
    Accurate dietary analysis of energy, nutrient intake, and meal timing in human studies using traditional dietary assessment methods (e.g., food records) is challenging and time-consuming. The widespread use of smartphones, tablets, and nutrition applications (apps) can overcome some of these problems. The objective of this study was to evaluate the validity of an FDDB smartphone app and food database compared with PRODIĀ®ā€”a professional platform for nutritional counselling using the German Nutrient Database. Dietary records were collected from 10 subjects participating in the crossover intermittent fasting trial for 2 weeks at baseline and during the eating timeframe of 8 h (early or late in the course of the day). The FDDB app and database enabled a quicker and less sophisticated analysis of food composition and timing than the PRODIĀ® software. Good agreement between the methods was found for energy and macronutrient intakes, while the FDDB data on most micronutrients and saturated/unsaturated fat intake were unreliable. In contrast to PRODIĀ®, FDDB provided effective assessment of timely compliance, making it a promising tool for chrononutritional studies. Thus, the FDDB app is comparable to the traditional PRODIĀ® dietary assessment method, and can be effectively used in human dietary trials and medical practice for specific goals

    An Isocaloric High-Fat Diet Regulates Partially Genetically Determined Fatty Acid and Carbohydrate Uptake and Metabolism in Subcutaneous Adipose Tissue of Lean Adult Twins

    No full text
    Background: The dysfunction of energy metabolism in white adipose tissue (WAT) induces adiposity. Obesogenic diets that are high in saturated fat disturb nutrient metabolism in adipocytes. This study investigated the effect of an isocaloric high-fat diet without the confounding effects of weight gain on the gene expression of fatty acid and carbohydrate transport and metabolism and its genetic inheritance in subcutaneous (s.c.) WAT of healthy human twins. Methods: Forty-six healthy pairs of twins (34 monozygotic, 12 dizygotic) received an isocaloric carbohydrate-rich diet (55% carbohydrates, 30% fat, 15% protein; LF) for 6 weeks followed by an isocaloric diet rich in saturated fat (40% carbohydrates, 45% fat, 15% protein; HF) for another 6 weeks. Results: Gene expression analysis of s.c. WAT revealed that fatty acid transport was reduced after one week of the HF diet, which persisted throughout the study and was not inherited, whereas intracellular metabolism was decreased after six weeks and inherited. An increased inherited gene expression of fructose transport was observed after one and six weeks, potentially leading to increased de novo lipogenesis. Conclusion: An isocaloric dietary increase of fat induced a tightly orchestrated, partially inherited network of genes responsible for fatty acid and carbohydrate transport and metabolism in human s.c. WAT
    corecore