678 research outputs found
Local RBF approximation for scattered data fitting with bivariate splines
In this paper we continue our earlier research [4] aimed at developing effcient methods of local approximation suitable for the first stage of a spline based two-stage scattered data fitting algorithm. As an improvement to the pure polynomial local approximation method used in [5], a hybrid polynomial/radial basis scheme was considered in [4], where the local knot locations for the RBF terms were selected using a greedy knot insertion algorithm. In this paper standard radial local approximations based on interpolation or least squares are considered and a faster procedure is used for knot selection, signicantly reducing the computational cost of the method. Error analysis of the method and numerical results illustrating its performance are given
Cosmological Perturbations of Quantum-Mechanical Origin and Anisotropy of the Microwave Background
Cosmological perturbations generated quantum-mechanically (as a particular
case, during inflation) possess statistical properties of squeezed quantum
states. The power spectra of the perturbations are modulated and the angular
distribution of the produced temperature fluctuations of the CMBR is quite
specific. An exact formula is derived for the angular correlation function of
the temperature fluctuations caused by squeezed gravitational waves. The
predicted angular pattern can, in principle, be revealed by the COBE-type
observations.Comment: 9 pages, WUGRAV-92-17 Accepted for Publication in Phys. Rev. Letters
(1993
On Bures fidelity of displaced squeezed thermal states
Fidelity plays a key role in quantum information and communication theory.
Fidelity can be interpreted as the probability that a decoded message possesses
the same information content as the message prior to coding and transmission.
In this paper, we give a formula of Bures fidelity for displaced squeezed
thermal states directly by the displacement and squeezing parameters and
birefly discuss how the results can apply to quantum information theory.Comment: 10 pages with RevTex require
Ultra-high brilliance multi-MeV -ray beam from non-linear Thomson scattering
We report on the generation of a narrow divergence (
mrad), multi-MeV ( MeV) and ultra-high brilliance ( photons s mm mrad 0.1\% BW) -ray
beam from the scattering of an ultra-relativistic laser-wakefield accelerated
electron beam in the field of a relativistically intense laser (dimensionless
amplitude ). The spectrum of the generated -ray beam is
measured, with MeV resolution, seamlessly from 6 MeV to 18 MeV, giving clear
evidence of the onset of non-linear Thomson scattering. The photon source has
the highest brilliance in the multi-MeV regime ever reported in the literature
Geometric Phase, Hannay's Angle, and an Exact Action Variable
Canonical structure of a generalized time-periodic harmonic oscillator is
studied by finding the exact action variable (invariant). Hannay's angle is
defined if closed curves of constant action variables return to the same curves
in phase space after a time evolution. The condition for the existence of
Hannay's angle turns out to be identical to that for the existence of a
complete set of (quasi)periodic wave functions. Hannay's angle is calculated,
and it is shown that Berry's relation of semiclassical origin on geometric
phase and Hannay's angle is exact for the cases considered.Comment: Submitted to Phys. Rev. Lett. (revised version
Two Mode Quantum Systems: Invariant Classification of Squeezing Transformations and Squeezed States
A general analysis of squeezing transformations for two mode systems is given
based on the four dimensional real symplectic group Sp(4,\Re)\/. Within the
framework of the unitary metaplectic representation of this group, a
distinction between compact photon number conserving and noncompact photon
number nonconserving squeezing transformations is made. We exploit the
Sp(4,\Re)-SO(3,2)\/ local isomorphism and the U(2)\/ invariant squeezing
criterion to divide the set of all squeezing transformations into a two
parameter family of distinct equivalence classes with representative elements
chosen for each class. Familiar two mode squeezing transformations in the
literature are recognized in our framework and seen to form a set of measure
zero. Examples of squeezed coherent and thermal states are worked out. The need
to extend the heterodyne detection scheme to encompass all of U(2)\/ is
emphasized, and known experimental situations where all U(2)\/ elements can
be reproduced are briefly described.Comment: Revtex 37 pages, Latex figures include
Vacuum fluctuations and the conditional homodyne detection of squeezed light
Conditional homodyne detection of quadrature squeezing is compared with
standard nonconditional detection. Whereas the latter identifies
nonclassicality in a quantitative way, as a reduction of the noise power below
the shot noise level, conditional detection makes a qualitative distinction
between vacuum state squeezing and squeezed classical noise. Implications of
this comparison for the realistic interpretation of vacuum fluctuations
(stochastic electrodynamics) are discussed.Comment: 14 pages, 7 figures, to appear in J. Opt. B: Quantum Semiclass. Op
On-ground tests of LISA PathFinder thermal diagnostics system
Thermal conditions in the LTP, the LISA Technology Package, are required to
be very stable, and in such environment precision temperature measurements are
also required for various diagnostics objectives. A sensitive temperature
gauging system for the LTP is being developed at IEEC, which includes a set of
thermistors and associated electronics. In this paper we discuss the derived
requirements applying to the temperature sensing system, and address the
problem of how to create in the laboratory a thermally quiet environment,
suitable to perform meaningful on-ground tests of the system. The concept is a
two layer spherical body, with a central aluminium core for sensor implantation
surrounded by a layer of polyurethane. We construct the insulator transfer
function, which relates the temperature at the core with the laboratory ambient
temperature, and evaluate the losses caused by heat leakage through connecting
wires. The results of the analysis indicate that, in spite of the very
demanding stability conditions, a sphere of outer diameter of the order one
metre is sufficient. We provide experimental evidence confirming the model
predictions.Comment: 18 pages, 5 figures, LaTeX2e (compile with pdflatex), sumbitted to
CQG. This paper is a significant extension of gr-qc/060109
- …