1,522 research outputs found
Comparison of solitary and collective foraging strategies of Caenorhabditis elegans in patchy food distributions
Collective foraging has been shown to benefit organisms in environments where food is patchily distributed, but whether this is true in the case where organisms do not rely on long range communications to coordinate their collective behaviour has been understudied. To address this question, we use the tractable laboratory model organism Caenorhabditis elegans, where a social strain (npr-1 mutant) and a solitary strain (N2) are available for direct comparison of foraging strategies. We first developed an on-lattice minimal model for comparing collective and solitary foraging strategies, finding that social agents benefit from feeding faster and more efficiently simply due to group formation. Our laboratory foraging experiments with npr-1 and N2 worm populations, however, show an advantage for solitary N2 in all food distribution environments that we tested. We incorporated additional strain43 specific behavioural parameters of npr-1 and N2 worms into our model and computationally identified N2’s higher feeding rate to be the key factor underlying its advantage, without which it is possible to recapitulate the advantage of collective foraging in patchy environments. Our work highlights the theoretical advantage of collective foraging due to group formation alone without long-range interactions, and the valuable role of modelling to guide experiments
Multilocation Corn Stover Harvest Effects on Crop Yields and Nutrient Removal
Corn (Zea mays L.) stover was identified as an important feedstock for cellulosic bioenergy production because of the extensive area upon which the crop is already grown. This report summarizes 239 site-years of field research examining effects of zero, moderate, and high stover removal rates at 36 sites in seven different states. Grain and stover yields from all sites as well as N, P, and K removal from 28 sites are summarized for nine longitude and six latitude bands, two tillage practices (conventional vs no tillage), two stover-harvest methods (machine vs calculated), and two crop rotations {continuous corn (maize) vs corn/soybean [Glycine max (L.) Merr.]}. Mean grain yields ranged from 5.0 to 12.0 Mg ha−1 (80 to 192 bu ac−1). Harvesting an average of 3.9 or 7.2 Mg ha−1(1.7 or 3.2 tons ac−1) of the corn stover resulted in a slight increase in grain yield at 57 and 51 % of the sites, respectively. Average no-till grain yields were significantly lower than with conventional tillage when stover was not harvested, but not when it was collected. Plant samples collected between physiological maturity and combine harvest showed that compared to not harvesting stover, N, P, and K removal was increased by 24, 2.7, and 31 kg ha−1, respectively, with moderate (3.9 Mg ha−1) harvest and by 47, 5.5, and 62 kg ha−1, respectively, with high (7.2 Mg ha−1) removal. This data will be useful for verifying simulation models and available corn stover feedstock projections, but is too variable for planning site-specific stover harvest
Proportions of Convective and Stratiform Precipitation Revealed in Water Isotope Ratios
Tropical and midlatitude precipitation is fundamentally of two types, spatially-limited and high-intensity convective or widespread and lower-intensity stratiform, owing to differences in vertical air motions and microphysical processes governing rain formation. These processes are difficult to observe or model and precipitation partitioning into rain types is critical for understanding how the water cycle responds to climate changes. Here, we combine two independent data sets – convective and stratiform precipitation fractions, derived from the Tropical Rainfall Measuring Mission satellite or synoptic cloud observations, and stable isotope and tritium compositions of surface precipitation, derived from a global network – to show that isotope ratios reflect rain type proportions and are negatively correlated with stratiform fractions. Condensation and riming associated with boundary layer moisture produces higher isotope ratios in convective rain, along with higher tritium when riming in deep convection occurs with entrained air at higher altitudes. Based on our data, stable isotope ratios can be used to monitor changes in the character of precipitation in response to periodic variability or changes in climate. Our results also provide observational constraints for an improved simulation of convection in climate models and a better understanding of isotope variations in proxy archives, such as speleothems and tropical ice
Novel Vaccines to Human Rabies
Rabies, the most fatal of all infectious diseases, remains a major public health problem in developing countries, claiming the lives of an estimated 55,000 people each year. Most fatal rabies cases, with more than half of them in children, result from dog bites and occur among low-income families in Southeast Asia and Africa. Safe and efficacious vaccines are available to prevent rabies. However, they have to be given repeatedly, three times for pre-exposure vaccination and four to five times for post-exposure prophylaxis (PEP). In cases of severe exposure, a regimen of vaccine combined with a rabies immunoglobulin (RIG) preparation is required. The high incidence of fatal rabies is linked to a lack of knowledge on the appropriate treatment of bite wounds, lack of access to costly PEP, and failure to follow up with repeat immunizations. New, more immunogenic but less costly rabies virus vaccines are needed to reduce the toll of rabies on human lives. A preventative vaccine used for the immunization of children, especially those in high incidence countries, would be expected to lower fatality rates. Such a vaccine would have to be inexpensive, safe, and provide sustained protection, preferably after a single dose. Novel regimens are also needed for PEP to reduce the need for the already scarce and costly RIG and to reduce the number of vaccine doses to one or two. In this review, the pipeline of new rabies vaccines that are in pre-clinical testing is provided and an opinion on those that might be best suited as potential replacements for the currently used vaccines is offered
Discordant American College of Physicians and international rheumatology guidelines for gout management: consensus statement of the Gout, Hyperuricemia and Crystal-Associated Disease Network (G-CAN).
In November 2016, the American College of Physicians (ACP) published a clinical practice guideline on the management of acute and recurrent gout. This guideline differs substantially from the latest guidelines generated by the American College of Rheumatology (ACR), European League Against Rheumatism (EULAR) and 3e (Evidence, Expertise, Exchange) Initiative, despite reviewing largely the same body of evidence. The Gout, Hyperuricemia and Crystal-Associated Disease Network (G-CAN) convened an expert panel to review the methodology and conclusions of these four sets of guidelines and examine possible reasons for discordance between them. The G-CAN position, presented here, is that the fundamental pathophysiological knowledge underlying gout care, and evidence from clinical experience and clinical trials, supports a treat-to-target approach for gout aimed at lowering serum urate levels to below the saturation threshold at which monosodium urate crystals form. This practice, which is truly evidence-based and promotes the steady reduction in tissue urate crystal deposits, is promoted by the ACR, EULAR and 3e Initiative recommendations. By contrast, the ACP does not provide a clear recommendation for urate-lowering therapy (ULT) for patients with frequent, recurrent flares or those with tophi, nor does it recommend monitoring serum urate levels of patients prescribed ULT. Results from emerging clinical trials that have gout symptoms as the primary end point are expected to resolve this debate for all clinicians in the near term future
Enhancement of Penaeus monodon shrimp postlarvae growth and survival without water exchange using marine Bacillus pumilus and periphytic microalgae.
We have investigated the possibility of using a consortium of marine bacterium and periphytic microalgae to improve the water quality and increase the growth and survival of the shrimp Penaeus monodon in a hatchery system. Three treatments were evaluated for their effect on P. monodon postlarvae (PL) when the culture water was not changed: Bacillus pumilus alone (B); periphytic microalgae alone (M); B. pumilus + periphytic microalgae (BM). P. monodon PL raised in a tank of unchanged water without bacterium and periphytic microalgae served as the control. The water in tanks of the M and BM treatments had significantly low levels of total ammonia-nitrogen (TAN) (0.03 and 0.01 mg l−1, respectively) and nitrite-nitrogen (NO2-N) (0.03, 0.01 mg l−1, respectively) than that in the B (TAN 0.80, NO2-N 0.68 mg l−1) and control (TAN 1.11, NO2-N 1.12 mg l−1) tanks. Moreover, PL cultured in tanks M and BM had significantly higher survival and specific growth rates and a significantly higher resistance to the reverse salinity stress test than those in the B and control tanks. Compared to the control PL, the PL cultured in the BM tanks had significantly higher levels of protein, lipid, polyunsaturated fatty acids, ecosapentaenoic acid, and docosahexaenoic acid. The culture water in tanks BM also contained significantly less Vibrio than the control water. Our results illustrate the beneficial effects of a B. pumilus and periphytic microalgae consortium on improving the water quality and the growth and survival of shrimp PL grown in a hatchery system
Cost of antipsychotic polypharmacy in the treatment of schizophrenia
<p>Abstract</p> <p>Background</p> <p>This study compared the costs of antipsychotic polypharmacy for patients who initiated on 1 of the 3 most commonly prescribed atypical antipsychotics – olanzapine, quetiapine, or risperidone.</p> <p>Methods</p> <p>Data were drawn from a large, prospective, naturalistic, multi-site, nonrandomized study of treatment for schizophrenia in the United States conducted between July 1997 and September 2003. Participants who were initiated on olanzapine (N = 405), quetiapine (N = 115), or risperidone (N = 276) were followed for 1 year post initiation and compared on: (a) average daily cost of the index antipsychotic while on the index antipsychotic, (b) average daily cost of the coprescribed antipsychotics while on the index antipsychotic, (c) average daily cost of the index antipsychotic and the coprescribed antipsychotics while on the index antipsychotic, (d) total annual cost of antipsychotic medications prescribed in the year following initiation on the index antipsychotic, using propensity score-adjusted bootstrap resampling method. Average daily antipsychotic costs and total annual antipsychotic costs were also estimated using more recent (2004) antipsychotic drug prices.</p> <p>Results</p> <p>During the 1 year following initiation on the index antipsychotic, the total average daily cost of the index antipsychotic was higher for quetiapine (13.90, p < .05) and risperidone (10.08) than risperidone (6.63, p < .01). Lower total average daily costs were observed in risperidone than olanzapine or quetiapine. Significantly lower average daily cost of concomitant antipsychotic medications for olanzapine (8.70, p < .01) or risperidone-initiated patients (1.31 on concomitant antipsychotics for quetiapine compared to 0.38 for olanzapine-initiated patients. A separate intent-to-treat analysis of the total annual antipsychotic cost found a significantly higher total annual antipsychotic cost for quetiapine-initiated patients (4536, p < .01) or risperidone ($3813, p < .01).</p> <p>Conclusion</p> <p>Prevalent antipsychotic polypharmacy adds substantial cost to the treatment of schizophrenia. Comparison of medication costs need to address the costs of all antipsychotics. A better understanding of concomitant antipsychotic costs provides a more accurate portrayal of antipsychotic medication costs in the treatment of schizophrenia.</p
- …