489 research outputs found

    Factors influencing life satisfaction in acute myeloid leukemia survivors following allogeneic stem cell transplantation: a cross-sectional study

    Full text link
    Background: Allogeneic stem cell transplantation (alloSCT) is the preferred option of postremission therapy for high-risk patients suffering from acute myeloid leukemia (AML). Therefore, monitoring life satisfaction (LS) of long-term survivors following alloSCT is becoming increasingly important for oncologists. The aim of the study was to evaluate individual survivor priority of various general and health-related domains of life and their satisfaction with these domains. Furthermore, we investigated the impact of general and health-related LS on resilience, anxiety, depression and quality of life in AML survivors following alloSCT. Methods: Forty-one AML survivors (median age at time of assessment = 49.0 years) who had undergone alloSCT (median time since transplantation = 3.1 years) were enrolled in the study. Psychosocial parameters were assessed using the following instruments: FLZM (Questions on Life Satisfaction), EORTC QLQ-C30, HADS (Hospital Anxiety and Depression Scale) and the RS-25 (Resilience Scale-25 items). Correlation analyses were computed to reveal the associations between the different questionnaires. Results: Independence from help or care, well-regulated living conditions and financial security contributed positively to LS, whereas being off work due to health-reasons and dissatisfaction with physical aspects were negatively associated to the subjective feelings of overall satisfaction. Moreover, a high quality of life was strongly positively correlated with LS (Spearman’s rho general LS: 0.643 and health-related LS: 0.726, both p < 0.001). A high degree of resilience was also strongly positively correlated with better LS (general LS: 0.700, health-related LS: 0.675, both p < 0.001). Symptoms of anxiety and depression were associated with an impaired general LS (anxiety: −0.674, depression: −0.698, both p < 0.001). Conclusions: Our results indicate that LS should be considered an important key contributor to the survivors’ well-being following alloSCT. Thus, identifying protective psychological and physical factors that relieve stressors is of high importance in order to support long-term AML survivors with their special needs.<br

    Analysis of Hurricanes Using Long-Range Lightning Detection Networks

    Get PDF
    The new GOES-R satellite will be equipped with the Geostationary Lightning Mapper (GLM) that will provide unprecedented total lightning data with the potential to improve hurricane intensity forecasts. Past studies have provided conflicting interpretations of the role that lightning plays in forecasting tropical cyclone (TC) intensity changes. With the goal of improving the usefulness of total lightning, detailed case studies were conducted of five TCs that underwent rapid intensification (RI) within the domains of two unique ground-based long-range lightning detection networks, the World Wide Lightning Location Network (WWLLN) and Earth Networks Total Lightning Network (ENTLN). This analysis will provide greater details of the distribution of lightning within predefined storm features to highlight specific phenomena that large statistical studies cannot resolve.Both WWLLN and ENTLN datasets showed similar spatial and temporal patterns in lightning that validates the independent use of either network for analysis. For the cases examined, a maxima in eyewall lightning was located downshear and in the front-right quadrants relative to storm motion. Results show that RI follows a burst of lightning in the eyewall when coinciding with a period of little environmental vertical shear. Eyewall lightning would cycle with greater frequency during intensification compared to weakening. Bursts of lightning were observed in the eyewall just prior to eye formation in both the infrared and microwave imagery. Eyewall lightning bursts in low shear environments could be used to indicate intensification and improve forecasts.University Libraries Undergraduate Research Awardundergraduat

    Prognostic impact of progression to induction chemotherapy and prior paclitaxel therapy in patients with germ cell tumors receiving salvage high-dose chemotherapy in the last 10 years: A study of the European Society for Blood and Marrow Transplantation Solid Tumors Working Party

    Get PDF
    Little is known about the prognostic impact of prior paclitaxel therapy and response to induction chemotherapy defined as the regimen preceding high-dose chemotherapy (HDCT) for the salvage therapy of advanced germ cell tumors. Twenty European Society for Blood and Marrow Transplantation centers contributed data on patients treated between 2002 and 2012. Paclitaxel used in either prior lines of therapy or in induction-mobilization regimens was considered. Multivariable Cox analyses of prespecified factors were undertaken on PFS and overall survival (OS). As of October 2013, data for 324 patients had been contributed to this study. One hundred and ninety-two patients (59.3%) had received paclitaxel. Sixty-one patients (19%) had a progression to induction chemotherapy, 234 (72%) a response (29 (9%) missing or granulocyte colony-stimulating factor without chemotherapy). Both progression to induction chemotherapy and prior paclitaxel were significantly associated with shorter OS univariably (P&lt;0.001 and P=0.032). On multivariable analysis from the model with fully available data (N=216) progression to induction was significantly prognostic for PFS and OS (P=0.003), but prior paclitaxel was not (P=0.674 and P=0.739). These results were confirmed after multiple imputation of missing data. Progression to induction chemotherapy could be demonstrated as an independent prognostic factor, in contrast to prior paclitaxel

    Sex-Specific Genetic Associations for Barrett's Esophagus and Esophageal Adenocarcinoma

    Get PDF
    Acknowledgments We thank Dr Stuart MacGregor for his input on the study proposal and review of prior versions of this manuscript. We also thank all patients and controls for participating in this study. The MD Anderson controls were drawn from dbGaP (study accession: phs000187.v1.p1). Genotyping of these controls were done through the University of Texas MD Anderson Cancer Center (UTMDACC) and the Johns Hopkins University Center for Inherited Disease Research (CIDR). We acknowledge the principal investigators of this study: Christopher Amos, Qingyi Wei, and Jeffrey E. Lee. Controls from the Genome-Wide Association Study of Parkinson Disease were obtained from dbGaP (study accession: phs000196.v2.p1). This work, in part, used data from the National Institute of Neurological Disorders and Stroke (NINDS) dbGaP database from the CIDR: NeuroGenetics Research Consortium Parkinson’s disease study. We acknowledge the principal investigators and coinvestigators of this study: Haydeh Payami, John Nutt, Cyrus Zabetian, Stewart Factor, Eric Molho, and Donald Higgins. Controls from the Chronic Renal Insufficiency Cohort (CRIC) were drawn from dbGaP (study accession: phs000524.v1.p1). The CRIC study was done by the CRIC investigators and supported by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Data and samples from CRIC reported here were supplied by NIDDK Central Repositories. This report was not prepared in collaboration with investigators of the CRIC study and does not necessarily reflect the opinions or views of the CRIC study, the NIDDK Central Repositories, or the NIDDK. We acknowledge the principal investigators and the project officer of this study: Harold I Feldman, Raymond R Townsend, Lawrence J. Appel, Mahboob Rahman, Akinlolu Ojo, James P. Lash, Jiang He, Alan S Go, and John W. Kusek. The following UK hospitals participated in sample collection through the Stomach and Oesophageal Cancer Study (SOCS) collaboration network: Addenbrooke’s Hospital, University College London, Bedford Hinchingbrooke Hospital, Peterborough City Hospital, West Suffolk Norfolk and Norwich University Hospital, Churchill Hospital, John Hospital, Velindre Hospital, St Bartholomew’s Hospital, Queen’s Burton, Queen Elisabeth Hospital, Diana Princess of Wales, Scunthorpe General Hospital, Royal Devon & Exeter Hospital, New Cross Hospital, Belfast City Hospital, Good Hope Hospital, Heartlands Hospital, South Tyneside District General Hospital, Cumberland Infirmary, West Cumberland Hospital, Withybush General Hospital, Stoke Mandeville Hospital, Wycombe General Hospital, Wexham Park Hospital, Southend Hospital, Guy’s Hospital, Southampton General Hospital, Bronglais General Hospital, Aberdeen Royal Infirmary, Manor Hospital, Clatterbridge Centre for Oncology, Lincoln County Hospital, Pilgrim Hospital, Grantham & District Hospital, St Mary’s Hospital London, Croydon University Hospital, Whipps Cross University Hospital, Wansbeck General Hospital, Hillingdon Hospital, Milton Keynes General Hospital, Royal Gwent Hospital, Tameside General Hospital, Castle Hill Hospital, St Richard’s Hospital, Ipswich Hospital, St Helens Hospital, Whiston Hospital, Countess of Chester Hospital, St Mary’s Hospital IOW, Queen Alexandra Hospital, Glan Clwyd Hospital, Wrexham Maelor Hospital, Darent Valley Hospital, Royal Derby Hospital, Derbyshire Royal Infirmary, Scarborough General Hospital, Kettering General Hospital, Kidderminster General Hospital, Royal Lancaster Infirmary, Furness General Hospital, Westmorland General Hospital, James Cook University Hospital, Friarage Hospital, Stepping Hill Hospital, St George’s Hospital London, Doncaster Royal Infirmary, Maidstone Hospital, Tunbridge Hospital, Prince Charles Hospital, Hartlepool Hospital, University Hospital of North Tees, Ysbyty Gwynedd, St. Jame’s University Hospital, Leeds General Infirmary, North Hampshire Hospital, Royal Preston Hospital, Chorley and District General, Airedale General Hospital, Huddersfield Royal Infirmary, Calderdale Royal Hospital, Torbay District General Hospital, Leighton Hospital, Royal Albert Edward Infirmary, Royal Surrey County Hospital, Bradford Royal Infirmary, Burnley General Hospital, Royal Blackburn Hospital, Royal Sussex County Hospital, Freeman Hospital, Royal Victoria Infirmary, Victoria Hospital Blackpool, Weston Park Hospital, Royal Hampshire County Hospital, Conquest Hospital, Royal Bournemouth General Hospital, Mount Vernon Hospital, Lister Hospital, William Harvey Hospital, Kent and Canterbury Hospital, Great Western Hospital, Dumfries and Galloway Royal Infirmary, Poole General Hospital, St Hellier Hospital, North Devon District Hospital, Salisbury District Hospital, Weston General Hospital, University Hospital Coventry, Warwick Hospital, George Eliot Hospital, Alexandra Hospital, Nottingham University Hospital, Royal Chesterfield Hospital, Yeovil District Hospital, Darlington Memorial Hospital, University Hospital of North Durham, Bishop Auckland General Hospital, Musgrove Park Hospital, Rochdale Infirmary, North Manchester General, Altnagelvin Area Hospital, Dorset County Hospital, James Paget Hospital, Derriford Hospital, Newham General Hospital, Ealing Hospital, Pinderfields General Hospital, Clayton Hospital, Dewsbury & District Hospital, Pontefract General Infirmary, Worthing Hospital, Macclesfield Hospital, University Hospital of North Staffordshire, Salford Royal Hospital, Royal Shrewsbury Hospital, and Manchester Royal Infirmary. Conflict of interest The authors disclose no conflicts. Funding This work was primarily funded by the National Institutes of Health (NIH) (R01CA136725). The funders of the study had no role in the design, analysis, or interpretation of the data, nor in writing or publication decisions related to this article. Jing Dong was supported by a Research Training Grant from the Cancer Prevention and Research Institute of Texas (CPRIT; RP160097) and the Research and Education Program Fund, a component of the Advancing a Healthier Wisconsin endowment at the Medical College of Wisconsin (AHW). Quinn T. Ostrom was supported by RP160097. Puya Gharahkhani was supported by a grant from National Health and Medical Research Council of Australia (1123248). Geoffrey Liu was supported by the Alan B. Brown Chair in Molecular Genomics and by the CCO Chair in Experimental Therapeutics and Population Studies. The University of Cambridge received salary support for Paul D. Pharoah from the NHS in the East of England through the Clinical Academic Reserve. Brian J. Reid was supported by a grant (P01CA91955) from the NIH/National Cancer Institute (NCI). Nicholas J. Shaheen was supported by a grant (P30 DK034987) from NIH. Thomas L. Vaughan was supported by NIH Established Investigator Award K05CA124911. Michael B. Cook was supported by the Intramural Research Program of the NCI, NIH, Department of Health and Human Services. Douglas A. Corley was supported by the NIH grants R03 KD 58294, R21DK077742, and RO1 DK63616 and NCI grant R01CA136725. Carlo Maj was supported by the BONFOR-program of the Medical Faculty, University of Bonn (O-147.0002). Jesper Lagergren was supported by the United European Gastroenterology (UEG) Research Prize. David C. Whiteman was supported by fellowships from the National Health and Medical Research Council of Australia (1058522, 1155413).Peer reviewedPostprin

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    corecore