6,652 research outputs found
Direct Measurement of the g-Factor of Composite Fermions
The activation gap of the fractional quantum Hall states at constant
fillings and 2/5 has been measured as a function of the
perpendicular magnetic field . A linear dependence of on is
observed while approaching the spin polarization transition. This feature
allows a direct measurement of the -factor of composite fermions which
appears to be heavily renormalized by interactions and strongly sensitive to
the electronic filling factor.Comment: 4 pages, 4 figures Changed content: Fokus more on g-factors (and less
on other details
Searching for molecular outflows in Hyper-Luminous Infrared Galaxies
We present constraints on the molecular outflows in a sample of five
Hyper-Luminous Infrared Galaxies using Herschel observations of the OH doublet
at 119 {\mu}m. We have detected the OH doublet in three cases: one purely in
emission and two purely in absorption. The observed emission profile has a
significant blueshifted wing suggesting the possibility of tracing an outflow.
Out of the two absorption profiles, one seems to be consistent with the
systemic velocity while the other clearly indicates the presence of a molecular
outflow whose maximum velocity is about ~1500 km/s. Our analysis shows that
this system is in general agreement with previous results on Ultra-luminous
Infrared Galaxies and QSOs, whose outflow velocities do not seem to correlate
with stellar masses or starburst luminosities (star formation rates). Instead
the galaxy outflow likely arises from an embedded AGN.Comment: Accepted for publication in MNRAS. 13 pages, 11 figures, 4 table
The degradation of MgB2 under ambient environment
The superconductivities of samples prepared by several procedures were found
to degrade under ambient environment. The degradation mechanism was studied by
measuring the change of surface chemical composition of dense MgB2 pellets
(prepared by hot isostatic pressure, HIPed) under atmospheric exposure using
X-ray Photoelectron Spectroscopy (XPS). Results showed that samples with poor
connectivity between grains and with smaller grain sizes degrade with time when
exposed to ambient conditions. In these samples, the Tc did not change with
time, but the superconducting transition became broader and the Meissner
fraction decreased. In contrast, our well-sintered and the HIPed samples
remained stable for several months under ambient condition. The degradation was
found to be related to surface decomposition as observed by XPS. We observed
the formation of oxidized Mg, primarily in the form of a Mg hydroxide, the
increase of C and O contents, and the reduction of B concentration in the
surface layer of MgB2 samples.Comment: 15 pages, 3 figure
FEM-based comparison of models to predict dynamic recrystallization during orthogonal cutting of AISI 4140
Machining processes induce a thermo-mechanical load collective on the surface layer, which leads to grain refinement of varying depths depending on several factors apart from the workpiece. The size relation of the cutting edge radius to the cutting depth (relative roundness) as well as the cutting edge microgeometry influence the generation of nanocrystalline layers. In this work several models to predict dynamic recrystallization during orthogonal cutting of AISI 4140 are compared using 2D FEM-models considering both, relative roundness and cutting edge microgeometry
Milling parameter and tool wear dependent surface quality in micro-milling of brass
Short life-time and high tool costs still remain major constraints for the micro-milling process. Understanding the wear mechanisms and their effects on the workpiece quality is essential for efficient tool usage. Usually, wear increases the cutting forces and reduces the emerging surface quality during the micro-milling process. Due to high tool costs, cutting parameters are usually chosen for optimal tool lifetime and/or process time rather than optimal surface quality.
The scope of this paper is to investigate the correlation of the process parameters, strategy and wear status of the tool on the resulting surface topography. To reach this goal, micro-milling experiments were conducted, in which several grooves were milled using two end milling tools, new and worn, with a diameter of 1.5 mm and four cutting edges. The cutting speed and feed were varied, as well as the cutting direction. Brass was chosen as workpiece material to ensure a constant wear state of the tools during the experiments. During the cutting process the process forces were recorded and examined for their magnitude and frequency response. Furthermore, the grooves were analyzed optically for their surface roughness.
The roughness shows in most cases slightly higher values for the specimen manufactured with the worn tool than the ones done with the new tool. The biggest influence on the surface roughness results from the feed rate, while cutting speed and milling strategy have a smaller influence. The measured cutting forces show similar tendencies, than the resulting surface roughness. The results show also a significant influence of tool wear on the vibration behavior during the process, while the influence of feed rate is mostly negligible. This results partly from the greater tool runout and bigger deviation of the cutting edges
Molecular screening of microorganisms associated with discolored wood in dead European beech trees suffered from extreme drought event using next generation sequencing
Drought events weaken trees and make them vulnerable to attacks by diverse plant pathogens. Here, we propose a molecular method for fast screening of microorganisms associated with European beech decline after an extreme drought period (2018) in a forest of Thuringia, Germany. We used Illumina sequencing with a recent bioinformatics approach based on DADA2 to identify archaeal, bacterial, and fungal ASVs (amplicon sequence variants) based on bacterial and archaeal 16S and fungal ITS genes. We show that symptomatic beech trees are associated with both bacterial and fungal plant pathogens. Although the plant pathogen sequences were detected in both discolored and non-discolored wood areas, they were highly enriched in the discolored wood areas. We show that almost each individual tree was associated with a different combination of pathogens. Cytospora spp. and Neonectria coccinea were among the most frequently detected fungal pathogens, whereas Erwinia spp. and Pseudomonas spp. were the dominant bacterial plant pathogens. We demonstrate that bacterial plant pathogens may be of major importance in beech decline
Purification and analytical characterization of an anti- CD4 monoclonal antibody for human therapy
A purification process for the monclonal anti-CD4 antibody MAX.16H5 was developed on an analytical scale using (NH&SO,
precipitation, anion-exchange chromatography on MonoQ or Q-Sepharose, hydrophobic interaction chromatography on phenyl-
Sepharose and gel filtration chromatography on Superdex 200. The purification schedule was scaled up and gram amounts of
MAX.16H5 were produced on corresponding BioPilot columns. Studies of the identity, purity and possible contamination by a
broad range of methods showed that the product was highly purified and free from contaminants such as mouse DNA, viruses,
pyrogens and irritants. Overall, the analytical data confirm that the monoclonal antibody MAX.16H5 prepared by this protocol is
suitable for human therapy
Influence of anisotropy of additively manufactured AlSi10Mg parts on chip formation during orthogonal cutting
Anisotropic behavior of metals can influence manufacturing processes including acting thermo-mechanical loads and resulting surface layer states. In additive manufacturing, the build-up direction influences material states like microstructure, density distribution and stress fields, possibly leading to anisotropic behavior.
In this work, additively manufactured AlSi10Mg is characterized in tension tests in order to determine the anisotropic material deformation behavior due to the build-up procedure. This was implemented in 2D cutting simulations using finite element method. Additionally, orthogonal cutting experiments were performed in order to determine process forces and chip formation, which finally were used in order to validate simulations
Hybrid protoneutron stars with the MIT bag model
We study the hadron-quark phase transition in the interior of protoneutron
stars. For the hadronic sector, we use a microscopic equation of state
involving nucleons and hyperons derived within the finite-temperature
Brueckner-Bethe-Goldstone many-body theory, with realistic two-body and
three-body forces. For the description of quark matter, we employ the MIT bag
model both with a constant and a density-dependent bag parameter. We calculate
the structure of protostars with the equation of state comprising both phases
and find maximum masses below 1.6 solar masses. Metastable heavy hybrid
protostars are not found.Comment: 12 pages, 9 figures submitted to Phys. Rev.
- …