19 research outputs found
Luttinger Liquid Instability in the One Dimensional t-J Model
We study the t-J model in one dimension by numerically projecting the true
ground state from a Luttinger liquid trial wave function. We find the model
exhibits Luttinger liquid behavior for most of the phase diagram in which
interaction strength and density are varied. However at small densities and
high interaction strengths a new phase with a gap to spin excitations and
enhanced superconducting correlations is found. We show this phase is a
Luther-Emery liquid and study its correlation functions.Comment: REVTEX, 11 pages. 4 Figures available on request from
[email protected]
Phase separation and stripe formation in the 2D t-J model: a comparison of numerical results
We make a critical analysis of numerical results for and against phase
separation and stripe formation in the t-J model. We argue that the frustrated
phase separation mechanism for stripe formation requires phase separation at
too high a doping for it to be consistent with existing numerical studies of
the t-J model. We compare variational energies for various methods, and
conclude that the most accurate calculations for large systems appear to be
from the density matrix renormalization group. These calculations imply that
the ground state of the doped t-J model is striped, not phase separated.Comment: This version includes a revised, more careful comparison of numerical
results between DMRG and Green's function Monte Carlo. In particular, for the
original posted version we were accidentally sent obsolete data by Hellberg
and Manousakis; their new results, which are what were used in their Physical
Review Letter, are more accurate because a better trial wavefunction was use
Variational state based on the Bethe ansatz solution and a correlated singlet liquid state in the one-dimensional t-J model
The one-dimensional t-J model is investigated by the variational Monte Carlo
method. A variational wave function based on the Bethe ansatz solution is newly
proposed, where the spin-charge separation is realized, and a long-range
correlation factor of Jastrow-type is included. In most regions of the phase
diagram, this wave function provides an excellent description of the
ground-state properties characterized as a Tomonaga-Luttinger liquid; Both of
the amplitude and exponent of correlation functions are correctly reproduced.
For the spin-gap phase, another trial state of correlated singlet pairs with a
Jastrow factor is introduced. This wave function shows generalized Luther-Emery
liquid behavior, exhibiting enhanced superconducting correlations and
exponential decay of the spin correlation function. Using these two variational
wave functions, the whole phase diagram is determined. In addition, relations
between the correlation exponent and variational parameters in the trial
functions are derived.Comment: REVTeX 3.0, 27 pages. 7 figures available upon request
([email protected]). To be published in Phys. Rev. B 5
Hybrid speciation driven by multilocus introgression of ecological traits
Hybridization allows adaptations to be shared among lineages and may trigger the evolution of new species1,2. However, convincing examples of homoploid hybrid speciation remain rare because it is challenging to demonstrate that hybridization was crucial in generating reproductive isolation3. Here we combine population genomic analysis with quantitative trait locus mapping of species-specific traits to examine a case of hybrid speciation in Heliconius butterflies. We show that Heliconius elevatus is a hybrid species that is sympatric with both parents and has persisted as an independently evolving lineage for at least 180,000 years. This is despite pervasive and ongoing gene flow with one parent, Heliconius pardalinus, which homogenizes 99% of their genomes. The remaining 1% introgressed from the other parent, Heliconius melpomene, and is scattered widely across the H. elevatus genome in islands of divergence from H. pardalinus. These islands contain multiple traits that are under disruptive selection, including colour pattern, wing shape, host plant preference, sex pheromones and mate choice. Collectively, these traits place H. elevatus on its own adaptive peak and permit coexistence with both parents. Our results show that speciation was driven by introgression of ecological traits, and that speciation with gene flow is possible with a multilocus genetic architecture
From old organisms to new molecules: integrative biology and therapeutic targets in accelerated human ageing
Understanding the basic biology of human ageing is a key milestone in attempting to ameliorate the deleterious consequences of old age. This is an urgent research priority given the global demographic shift towards an ageing population. Although some molecular pathways that have been proposed to contribute to ageing have been discovered using classical biochemistry and genetics, the complex, polygenic and stochastic nature of ageing is such that the process as a whole is not immediately amenable to biochemical analysis. Thus, attempts have been made to elucidate the causes of monogenic progeroid disorders that recapitulate some, if not all, features of normal ageing in the hope that this may contribute to our understanding of normal human ageing. Two canonical progeroid disorders are Werner’s syndrome and Hutchinson-Gilford progeroid syndrome (also known as progeria). Because such disorders are essentially phenocopies of ageing, rather than ageing itself, advances made in understanding their pathogenesis must always be contextualised within theories proposed to help explain how the normal process operates. One such possible ageing mechanism is described by the cell senescence hypothesis of ageing. Here, we discuss this hypothesis and demonstrate that it provides a plausible explanation for many of the ageing phenotypes seen in Werner’s syndrome and Hutchinson-Gilford progeriod syndrome. The recent exciting advances made in potential therapies for these two syndromes are also reviewed
Tiefenverteilung der Anregung charakteristischer Röntgenstrahlung in Kupfer durch 12 bis 30 keV-Elektronen.
The depth distribution of characteristic X-ray production in copper by 12 to 30 keV electrons has been measured with a zink tracer. The results are examined in terms of characteristic distribution parameters which show a potential law energy dependence. Reduction of the depth data and the electron energies by means of electron range and excitation energy, respectively, allows comparison with experimental and theoretical results of other authors on various target-tracer-combinations. Although a general energy dependence is found for the majority of the reduced characteristic parameters the accuracy of the data is not satisfying. Some of the measured distributions obviously contain large systematical errors