125 research outputs found

    Initial Measurements with the PETsys TOFPET2 ASIC Evaluation Kit and a Characterization of the ASIC TDC

    Full text link
    For a first characterization, we used the two KETEK-PM3325-WB SiPMs each equipped with a 3x3x5 mm3{}^3 LYSO scintillation crystal provided with the PETsys TOFPET2 ASIC Evaluation Kit. We changed the lower of two discriminator thresholds (D_T1) in the timing branch from vth_t1 = 5 - 30. The overvoltage was varied in a range of 1.25 V - 7.25 V. The ambient temperature was kept at 16{\deg}C. For all measurements, we performed an energy calibration including a correction for saturation. We evaluated the energy resolution, the coincidence resolving time (CRT) and the coincidence rate. At an overvoltage of 6 V, we obtained an energy resolution of about 10% FWHM, a CRT of approximately 210 ps FWHM and 400 ps FWTM, the coincidence rate showed only small variations of about 5%. To investigate the influence of the ambient temperature, it was varied between 12{\deg}C - 20{\deg}C. At 12{\deg}C and an overvoltage of 6.5 V, a CRT of approx. 195 ps FWHM and an energy resolution of about 9.5% FWHM could be measured. Observed satellite peaks in the time difference spectra were investigated in more detail. We could show that the location of the satellite peaks is correlated with a programmable delay element in the trigger circuit.Comment: This paper is under review with IEEE TRPMS. It has been presented in a talk at the PSMR 2018. This version of the manuscript was submitted as revision 2 to TRPMS after incrporating the comments of the reviewers. Only minor textchanges were made. Results, values and figures did not chang

    Development and validation of a measurement-driven inter crystal scatter recovery algorithm with in-system calibration

    Full text link
    In PET a high percentage of gamma photons being detected undergo Compton scattering in the scintillator. Scintillator blocks are often built from optically isolated crystals. Depending on the angle of incidence and the scintillator geometry this might lead to inter crystal scatter (ICS) events, where energy is deposited in two or more crystals in the detector, which common positioning and reconstruction algorithms cannot resolve. Therefore, ICS events worsen the spatial resolution and the signal-to-noise ratio in the reconstructed image. We want to address this challenge by recovering individual crystals from ICS events with their corresponding energy deposits. This information could ultimately be fed into an image reconstruction framework. In this work, we established an algorithm based on a detector that couples a readout channel to each crystal (one-to-one coupling), which combines a measurement-driven calibration and a fitting routine to achieve the recovery of crystal interactions from measured light patterns. Using Geant4 simulations, we validated and optimized this approach by comparing the recovered events to the simulation ground truth. We showed that, with the best performing algorithm versions, all correct crystals could be identified for 95-97% of the simulated events and the crystal energies as well as the event energy sum could be recovered adequately. For the event energy sum a deviation of less than 5% could be achieved for 96% of all events. Overall, the developed ICS recovery algorithm was successfully validated for one-to-one coupled detector. Future application for other detector configurations should be possible and will be investigated. Additionally, using the new crystal interaction information to determine the most likely first interaction crystal is being examined to improve efficiency and signal-to-noise ratio in the PET reconstruction.Comment: 18 pages, 10 figure

    Improving the Timing Resolution of Positron Emission Tomography Detectors Using Boosted Learning -- A Residual Physics Approach

    Full text link
    Artificial intelligence (AI) is entering medical imaging, mainly enhancing image reconstruction. Nevertheless, improvements throughout the entire processing, from signal detection to computation, potentially offer significant benefits. This work presents a novel and versatile approach to detector optimization using machine learning (ML) and residual physics. We apply the concept to positron emission tomography (PET), intending to improve the coincidence time resolution (CTR). PET visualizes metabolic processes in the body by detecting photons with scintillation detectors. Improved CTR performance offers the advantage of reducing radioactive dose exposure for patients. Modern PET detectors with sophisticated concepts and read-out topologies represent complex physical and electronic systems requiring dedicated calibration techniques. Traditional methods primarily depend on analytical formulations successfully describing the main detector characteristics. However, when accounting for higher-order effects, additional complexities arise matching theoretical models to experimental reality. Our work addresses this challenge by combining traditional calibration with AI and residual physics, presenting a highly promising approach. We present a residual physics-based strategy using gradient tree boosting and physics-guided data generation. The explainable AI framework SHapley Additive exPlanations (SHAP) was used to identify known physical effects with learned patterns. In addition, the models were tested against basic physical laws. We were able to improve the CTR significantly (more than 20%) for clinically relevant detectors of 19 mm height, reaching CTRs of 185 ps (450-550 keV)

    Classification of Chemicals According to UN-GHS and EU-CLP: A Review of Physical Hazard Classes and Their Intricate Interfaces to Transport and Former EU Legislation

    Get PDF
    The Globally Harmonized System of Classification and Labelling of Chemicals (UN-GHS) is being implemented in more and more countries all over the world; the EU has done so with the CLP-Regulation (EU-CLP). Compared to the undeniably important questions on health and environmental hazards, the classification of physical hazards of chemicals often has not been in the focus, although their implementation can be challenging and there are traps and pitfalls to be avoided. The following overview of the classification systematics for physical hazards aims at a principle understanding without detailing all criteria or test methods. Similarities and differences between the classification systems of the UN-GHS and EU-CLP, the transport of dangerous goods and the former EU system are reviewed with regard to the physical hazard classes. Available physical hazard classifications for the transport of dangerous goods and according to the former EU system can be used as available information when classifying according to the GHS. However, the interfaces of these classification systems and their limitations have to be understood well when concluding on GHS/CLP classifications. This applies not only to industry when applying CLP but especially to legislators when adapting legislation that in one way or another refers to the classification of chemicals

    A Finely Segmented Semi-Monolithic Detector tailored for High Resolution PET

    Full text link
    Preclinical research and organ-dedicated applications require high-resolution positron emission tomography (PET) detectors to visualize small structures and understand biological processes at a finer level of detail. Current commercial systems often employ finely pixelated or monolithic scintillators, each with its limitations. We present a semi-monolithic detector, tailored for high-resolution PET applications, and merging concepts of monolithic and pixelated crystals. The detector features slabs measuring (24 x 10 x 1) sq. mm, coupled to a 12 x 12 readout channel photosensor with 4 mm pitch. The slabs are grouped in two arrays of 44 slabs each to achieve a higher optical photon density. We employ a fan beam collimator for fast calibration to train machine-learning-based positioning models for all three dimensions, including slab identification and depth-of-interaction (DOI), utilizing gradient tree boosting (GTB). Energy calculation was based on a position-dependent energy calibration. Using an analytical timing calibration, time skews were corrected for coincidence timing resolution (CTR) estimation. Leveraging machine-learning-based calibration in all three dimensions, we achieved high detector spatial resolution: down to 1.18 mm full width at half maximum (FWHM) detector spatial resolution and 0.75 mm mean absolute error (MAE) in the planar-monolithic direction along the slabs, and 2.14 mm FWHM and 1.03 mm MAE for depth-of-interaction (DOI) at an energy window of (435-585) keV. Correct slab interaction identification exceeded 80%, alongside an energy resolution of 13.8% and a CTR of 450 ps FWHM. Therewith, the introduced finely segmented, high-resolution slab detector demonstrates an appealing performance suitable for high-resolution PET applications. The current benchtop-based detector calibration routine allows these detectors to be used in PET systems.Comment: 14 pages, 11 figures, IEEE NSS MIC RTSD 202

    Initial PET Performance Evaluation of a Preclinical Insert for PET/MRI with Digital SiPM Technology

    Get PDF
    Hyperion-IID is a positron emission tomography (PET) insert which allows simultaneous operation in a clinical magnetic resonance imaging (MRI) scanner. To read out the scintillation light of the employed LYSO crystal arrays with a pitch of 1 mm pitch and 12 mm in height, digital silicon photomultipliers (DPC 3200-22, Philips Digital Photon Counting) (DPC) are used. The basic PET performance in terms of energy resolution, coincidence resolution time (CRT) and sensitivity as a function of operating parameters, such as the operating temperature, the applied overvoltage, activity and configuration parameters of the DPCs, were evaluated on system level. The measured energy resolution did not show a large dependency on the selected parameters and is in the range of 12.4-12.9% for low activities and degrades to ~13.6% at activities of ~100 MBq. The CRT strongly depends on the selected trigger scheme (trig) of the DPCs. We measured approximately 260 ps, 440 ps, 540 ps and 1300 ps for trig 1-4, respectively. The trues sensitivity for a NEMA NU 4 mouse-sized scatter phantom with a 70-mm-long tube of activity was dependent on the operating parameters and was determined to be 0.4-1.4% at low activities. The random fraction stayed below 5% at activities up to 100 MBq and the scatter fraction was evaluated as ~6% for an energy window of 411-561 keV and ~16% for 250-625 keV. Furthermore, we performed imaging experiments using a mouse-sized hot-rod phantom and a large rabbit-sized phantom. In 2D slices of the reconstructed mouse-sized hot-rod phantom ({\O} = 28 mm), the rods were distinguishable from each other down to a rod size of 0.8 mm. There was no benefit of the better CRT of trig 1 over trig 3, where in the larger rabbit-sized phantom ({\O} = 114 mm), we could show a clear improvement of image quality using the time-of-flight information.Comment: Final journal version including the supplemntal data. The images in the supplement were compressed to meet the arXiv file size limi
    • …
    corecore