522 research outputs found
Dissection of Nodule Development by Supplementation of \u3cem\u3eRhizobium leguminosarum\u3c/em\u3e biovar \u3cem\u3ephaseoli\u3c/em\u3e Purine Auxotrophs with 4-Aminoimidazole-5-Carboxamide Riboside
Purine auxotrophs of Rhizobium leguminosarum biovar phaseoli CFN42 elicit uninfected pseudonodules on bean (Phaseolus vulgaris L.). Addition of 4-aminoimidazole-5-carboxamide (AICA) riboside to the root medium during incubation of the plant with these mutants leads to enhanced nodule development, although nitrogenase activity is not detected. Nodules elicited in this manner had infection threads and anatomical features characteristic of normal nodules, such as peripheral vasculature rather than the central vasculature of the pseudonodules that were elicited without AICA riboside supplementation. Although 105 to 106 bacteria could be recovered from these nodules after full development, bacteria were not observed in the interior nodule cells. Instead, large cells with extensive internal membranes were present. Approximately 5% of the normal amount of leghemoglobin and 10% of the normal amount of uricase were detected in these nodules. To promote the development of true nodules rather than pseudonodules, AICA riboside was required no later than the second day through no more than the sixth day following inoculation. After this period, removal of AICA riboside from the root medium did not prevent the formation of true nodules. This observation suggests that there is a critical stage of infection, reached before nodule emergence, at which development becomes committed to forming a true nodule rather than a pseudonodule
Infection of Soybean and Pea Nodules by \u3cem\u3eRhizobium\u3c/em\u3e spp. Purine Auxotrophs in the Presence of 5-aminoimidazole-4-Carboxamide Riboside
Purine auxotrophs of various Rhizobium species are symbiotically defective, usually unable to initiate or complete the infection process. Earlier studies demonstrated that, in the Rhizobium etli-bean symbiosis, infection by purine auxotrophs is partially restored by supplementation of the plant medium with 5-amino-imidazole-4-carboxamide (AICA) riboside, the unphosphorylated form of the purine biosynthetic intermediate AICAR. The addition of purine to the root environment does not have this effect. In this study, purine auxotrophs of Rhizobium fredii HH303 and Rhizobium leguminosarum 128C56 (bv. viciae) were examined. Nutritional and genetic characterization indicated that each mutant was blocked in purine biosynthesis prior to the production of AICAR. R. fredii HH303 and R. leguminosarum 128C56 appeared to be deficient in AICA riboside transport and/or conversion into AICAR, and the auxotrophs derived from them grew very poorly with AICA riboside as a purine source. All of the auxotrophs elicited poorly developed, uninfected nodules on their appropriate hosts. On peas, addition of AICA riboside or purine to the root environment led to enhanced nodulation; however, infection threads were observed only in the presence of AICA riboside. On soybeans, only AICA riboside was effective in enhancing nodulation and promoting infection. Although AICA riboside supplementation of the auxotrophs led to infection thread development on both hosts, the numbers of bacteria recovered from the nodules were still 2 or more orders of magnitude lower than in fully developed nodules populated by wild-type bacteria. The ability to AICA riboside to promote infection by purine auxotrophs, despite serving as a very poor purine source for these strains, supports the hypothesis that AICAR plays a role in infection other than merely promoting bacterial growth
Atmospheric circulation patterns, cloud-to-ground lightning, and locally intense convective rainfall associated with debris flow initiation in the Dolomite Alps of northeastern Italy
The Dolomite Alps of northeastern Italy experience debris flows with great
frequency during the summer months. An ample supply of unconsolidated
material on steep slopes and a summer season climate regime characterized by
recurrent thunderstorms combine to produce an abundance of these destructive
hydro-geologic events. In the past, debris flow events have been studied
primarily in the context of their geologic and geomorphic characteristics.
The atmospheric contribution to these mass-wasting events has been limited
to recording rainfall and developing intensity thresholds for debris
mobilization. This study aims to expand the examination of atmospheric
processes that preceded both locally intense convective rainfall (LICR) and
debris flows in the Dolomite region. 500 hPa pressure level plots of
geopotential heights were constructed for a period of 3 days prior to
debris flow events to gain insight into the synoptic-scale processes which
provide an environment conducive to LICR in the Dolomites. Cloud-to-ground (CG)
lightning flash data recorded at the meso-scale were incorporated to
assess the convective environment proximal to debris flow source regions.
Twelve events were analyzed and from this analysis three common synoptic-scale circulation patterns were identified. Evaluation of CG flashes at
smaller spatial and temporal scales illustrated that convective processes
vary in their production of CF flashes (total number) and the spatial
distribution of flashes can also be quite different between events over
longer periods. During the 60 min interval immediately preceding debris
flow a majority of cases exhibited spatial and temporal colocation of LICR
and CG flashes. Also a number of CG flash parameters were found to be
significantly correlated to rainfall intensity prior to debris flow initiation
Comparing rates of adverse events detected in incident reporting and the Global Trigger Tool: a systematic review
Many hospitals continue to use incident reporting systems (IRSs) as their primary patient safety data source. The information IRSs collect on the frequency of harm to patients [adverse events (AEs)] is generally of poor quality, and some incident types (e.g. diagnostic errors) are under-reported. Other methods of collecting patient safety information using medical record review, such as the Global Trigger Tool (GTT), have been developed. The aim of this study was to undertake a systematic review to empirically quantify the gap between the percentage of AEs detected using the GTT to those that are also detected via IRSs. The review was conducted in adherence to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Studies published in English, which collected AE data using the GTT and IRSs, were included. In total, 14 studies met the inclusion criteria. All studies were undertaken in hospitals and were published between 2006 and 2022. The studies were conducted in six countries, mainly in the USA (nine studies). Studies reviewed 22 589 medical records using the GTT across 107 institutions finding 7166 AEs. The percentage of AEs detected using the GTT that were also detected in corresponding IRSs ranged from 0% to 37.4% with an average of 7.0% (SD 9.1; median 3.9 and IQR 5.2). Twelve of the fourteen studies found 10-fold gap between the detection rates of the GTT and IRSs is strong evidence that the rate of AEs collected in IRSs in hospitals should not be used to measure or as a proxy for the level of safety of a hospital. IRSs should be recognized for their strengths which are to detect rare, serious, and new incident types and to enable analysis of contributing and contextual factors to develop preventive and corrective strategies. Health systems should use multiple patient safety data sources to prioritize interventions and promote a cycle of action and improvement based on data rather than merely just collecting and analysing information
Inactivation of the Bacterial Pathogens \u3cem\u3eStaphylococcus pseudintermedius\u3c/em\u3e and \u3cem\u3eAcinetobacter baumannii\u3c/em\u3e By Butanoic Acid
Aims
This study was performed to evaluate the efficacy of butanoic acid against bacterial pathogens including Acinetobacter baumannii and Staphylococcus pseudintermedius. Methods and Results
Vegetative bacteria were exposed to butanoic acid in vitro and log reduction was quantified using viable count assays. The maximum (8 and 9) log inactivation was determined by qualitatively assaying for growth/no-growth after a 48-h incubation (37°C). Membrane integrity after exposure to butanoic acid was determined by propidium iodide staining, scanning electron microscopy, membrane depolarization and inductively coupled plasma analysis. Cytosolic pH was measured by 5-(6-)carboxyfluorescein succinimidyl ester. Conclusions
Inhibitory concentrations of butanoic acid ranged between 11 and 21 mmol l−1 for Gram-positive and Gram-negative species tested. The maximum log reduction of A. baumannii was achieved with a 10-s exposure of 0·50 mol l−1 of butanoic acid. Staphylococcus pseudintermedius required 0·40 mol l−1 of butanoic acid to achieve the same level of reduction in the same time period. Inactivation was associated with membrane permeability and acidification of the cytosol. Significance and Impact of the Study
Antibiotic resistance among bacterial pathogens necessitates the utilization of novel therapeutics for disinfection and biological control. These results may facilitate the development of butanoic acid as an effective agent against a broad-spectrum of antibiotic-resistant bacterial pathogens
Preliminary Results on HAT-P-4, TrES-3, XO-2, and GJ 436 from the NASA EPOXI Mission
EPOXI (EPOCh + DIXI) is a NASA Discovery Program Mission of Opportunity using
the Deep Impact flyby spacecraft. The EPOCh (Extrasolar Planet Observation and
Characterization) Science Investigation will gather photometric time series of
known transiting exoplanet systems from January through August 2008. Here we
describe the steps in the photometric extraction of the time series and present
preliminary results of the first four EPOCh targets.Comment: 4 pages, 2 figures. To appear in the Proceedings of the 253rd IAU
Symposium: "Transiting Planets", May 2008, Cambridge, M
Gli3 utilizes Hand2 to synergistically regulate tissue-specific transcriptional networks.
Despite a common understanding that Gli TFs are utilized to convey a Hh morphogen gradient, genetic analyses suggest craniofacial development does not completely fit this paradigm. Using the mouse model (Mus musculus), we demonstrated that rather than being driven by a Hh threshold, robust Gli3 transcriptional activity during skeletal and glossal development required interaction with the basic helix-loop-helix TF Hand2. Not only did genetic and expression data support a co-factorial relationship, but genomic analysis revealed that Gli3 and Hand2 were enriched at regulatory elements for genes essential for mandibular patterning and development. Interestingly, motif analysis at sites co-occupied by Gli3 and Hand2 uncovered mandibular-specific, low-affinity, \u27divergent\u27 Gli-binding motifs (dGBMs). Functional validation revealed these dGBMs conveyed synergistic activation of Gli targets essential for mandibular patterning and development. In summary, this work elucidates a novel, sequence-dependent mechanism for Gli transcriptional activity within the craniofacial complex that is independent of a graded Hh signal
Glycerol monolaurate prevents mucosal SIV transmission
Although there has been great progress in treating human immunodeficiency virus 1 (HIV-1) infection1, preventing transmission has thus far proven an elusive goal. Indeed, recent trials of a candidate vaccine and microbicide have been disappointing, both for want of efficacy and concerns about increased rates of transmission2–4. Nonetheless, studies of vaginal transmission in the simian immunodeficiency virus (SIV)–rhesus macaque (Macacca mulatta) model point to opportunities at the earliest stages of infection in which a vaccine or microbicide might be protective, by limiting the expansion of infected founder populations at the portal of entry5,6. Here we show in this SIV–macaque model, that an outside-in endocervical mucosal signalling system, involving MIP-3α (also known as CCL20), plasmacytoid dendritic cells and CCR5+ cell-attracting chemokines produced by these cells, in combination with the innate immune and inflammatory responses to infection in both cervix and vagina, recruits CD4+ T cells to fuel this obligate expansion. We then show that glycerol monolaurate—a widely used antimicrobial compound7with inhibitory activity against the production of MIP-3α and other proinflammatory cytokines8—can inhibit mucosal signalling and the innate and inflammatory response to HIV-1 and SIV in vitro, and in vivo it can protect rhesus macaques from acute infection despite repeated intra-vaginal exposure to high doses of SIV. This new approach, plausibly linked to interfering with innate host responses that recruit the target cells necessary to establish systemic infection, opens a promising new avenue for the development of effective interventions to blockHIV-1 mucosal transmission
Особенности конфликтогенных зон у больных невротическими расстройствами женщин
Представлены данные о различии конфликтогенных зон у женщин и мужчин, страдающих невротическими расстройствами. Показано, что выявленные особенности необходимо учитывать в диагностике и психотерапии невротических расстройств.The authors report the data about the differences in conflectogenic zones among women and men with neurotic disorders. It was shown that the revealed peculiarities should be taken into consideration in diagnosis and psychotherapy of neurotic disorders
- …