45 research outputs found

    Scaling of the specific heat in superfluid films

    Full text link
    We study the specific heat of the x−yx-y model on lattices L×L×HL \times L \times H with L≫HL \gg H (i.e. on lattices representing a film geometry) using the Cluster Monte--Carlo method. In the HH--direction we apply Dirichlet boundary conditions so that the order parameter in the top and bottom layers is zero. We find that our results for the specific heat of various thickness size HH collapse on the same universal scaling function. The extracted scaling function of the specific heat is in good agreement with the experimentally determined universal scaling function using no free parameters.Comment: 4 pages, uuencoded compressed PostScrip

    Scaling of the superfluid density in superfluid films

    Full text link
    We study scaling of the superfluid density with respect to the film thickness by simulating the x−yx-y model on films of size L×L×HL \times L \times H (L>>HL >> H) using the cluster Monte Carlo. While periodic boundary conditions where used in the planar (LL) directions, Dirichlet boundary conditions where used along the film thickness. We find that our results can be scaled on a universal curve by introducing an effective thickness. In the limit of large HH our scaling relations reduce to the conventional scaling forms. Using the same idea we find scaling in the experimental results using the same value of ν=0.6705\nu = 0.6705.Comment: 4 pages, one postscript file replaced by one Latex file and 5 postscript figure

    Scaling of thermal conductivity of helium confined in pores

    Full text link
    We have studied the thermal conductivity of confined superfluids on a bar-like geometry. We use the planar magnet lattice model on a lattice H×H×LH\times H\times L with L≫HL \gg H. We have applied open boundary conditions on the bar sides (the confined directions of length HH) and periodic along the long direction. We have adopted a hybrid Monte Carlo algorithm to efficiently deal with the critical slowing down and in order to solve the dynamical equations of motion we use a discretization technique which introduces errors only O((δt)6)O((\delta t)^6) in the time step δt\delta t. Our results demonstrate the validity of scaling using known values of the critical exponents and we obtained the scaling function of the thermal resistivity. We find that our results for the thermal resistivity scaling function are in very good agreement with the available experimental results for pores using the tempComment: 5 two-column pages, 3 figures, Revtex

    Critical behavior of the planar magnet model in three dimensions

    Full text link
    We use a hybrid Monte Carlo algorithm in which a single-cluster update is combined with the over-relaxation and Metropolis spin re-orientation algorithm. Periodic boundary conditions were applied in all directions. We have calculated the fourth-order cumulant in finite size lattices using the single-histogram re-weighting method. Using finite-size scaling theory, we obtained the critical temperature which is very different from that of the usual XY model. At the critical temperature, we calculated the susceptibility and the magnetization on lattices of size up to 42342^3. Using finite-size scaling theory we accurately determine the critical exponents of the model and find that ν\nu=0.670(7), γ/ν\gamma/\nu=1.9696(37), and β/ν\beta/\nu=0.515(2). Thus, we conclude that the model belongs to the same universality class with the XY model, as expected.Comment: 11 pages, 5 figure

    Finite-Size Scaling in Two-Dimensional Superfluids

    Full text link
    Using the x−yx-y model and a non-local updating scheme called cluster Monte Carlo, we calculate the superfluid density of a two dimensional superfluid on large-size square lattices L×LL \times L up to 400×400400\times 400. This technique allows us to approach temperatures close to the critical point, and by studying a wide range of LL values and applying finite-size scaling theory we are able to extract the critical properties of the system. We calculate the superfluid density and from that we extract the renormalization group beta function. We derive finite-size scaling expressions using the Kosterlitz-Thouless-Nelson Renormalization Group equations and show that they are in very good agreement with our numerical results. This allows us to extrapolate our results to the infinite-size limit. We also find that the universal discontinuity of the superfluid density at the critical temperature is in very good agreement with the Kosterlitz-Thouless-Nelson calculation and experiments.Comment: 13 pages, postscript fil

    Finite-size scaling of the helicity modulus of the two-dimensional O(3) model

    Full text link
    Using Monte Carlo methods, we compute the finite-size scaling function of the helicity modulus Υ\Upsilon of the two-dimensional O(3) model and compare it to the low temperature expansion prediction. From this, we estimate the range of validity for the leading terms of the low temperature expansion of the finite-size scaling function and for the low temperature expansion of the correlation length. Our results strongly suggest that a Kosterlitz-Thouless transition at a temperature T>0T > 0 is extremely unlikely in this model.Comment: 4 pages, 3 Postscript figures, to appear in Phys. Rev. B Jan. 1997 as a Brief Repor

    Classical Phase Fluctuations in High Temperature Superconductors

    Full text link
    Phase fluctuations of the superconducting order parameter play a larger role in the cuprates than in conventional BCS superconductors because of the low superfluid density of a doped insulator. In this paper, we analyze an XY model of classical phase fluctuations in the high temperature superconductors using a low-temperature expansion and Monte Carlo simulations. In agreement with experiment, the value of the superfluid density at temperature T=0 is a quite robust predictor of Tc, and the evolution of the superfluid density with T, including its T-linear behavior at low temperature, is insensitive to microscopic details.Comment: 4 pages, 1 figur

    Thermal excitations of frustated XY spins in two dimensions

    Full text link
    We present a new variational approach to the study of phase transitions in frustrated 2D XY models. In the spirit of Villain's approach for the ferromagnetic case we divide thermal excitations into a low temperature long wavelength part (LW) and a high temperature short wavelength part (SW). In the present work we mainly deal with LW excitations and we explicitly consider the cases of the fully frustrated triangular (FFTXY) and square ( FFSQXY) XY models. The novel aspect of our method is that it preserves the coupling between phase (spin angles) and chiral degrees of freedom. LW fluctuations consist of coupled phase and chiral excitations. As a result, we find that for frustrated systems the effective interactions between phase variables is long range and oscillatory in contrast to the unfrustrated problem. Using Monte Carlo (MC) simulations we show that our analytical calculations produce accurate results at all temperature TT; this is seen at low TT in the spin wave stiffness constant and in the staggered chirality; this is also the case near TcT_c: transitions are driven by the SW part associated with domain walls and vortices, but the coupling between phase and chiral variables is still relevant in the critical region. In that regime our analytical results yield the correct TT dependence for bare couplings (given by the LW fluctuations) such as the Coulomb gas temperature TCGT_{CG} of the frustrated XY models . In particular we find that TCGT_{CG} tracks chiral rather than phase fluctuations. Our results provides support for a single phase transition scenario in the FFTXY and FFSQXY models.Comment: 32 pages, RevTex, 11 eps figures available upon request, article to appear in Phys. Rev.

    The specific heat of superfluids near the transition temperature

    Full text link
    The specific heat of the x−yx-y model is studied on cubic lattices of sizes L×L×LL \times L \times L and on lattices L×L×HL \times L \times H with L≫HL \gg H (i.e. on lattices representing a film geometry) using the Cluster Monte Carlo method. Periodic boundary conditions were applied in all directions. In the cubic case we obtained the ratio of the critical exponents α/ν\alpha/\nu from the size dependence of the energy density at the critical temperature TλT_{\lambda}. Using finite--size scaling theory, we find that while for both geometries our results scale to universal functions, these functions differ for the different geometries. We compare our findings to experimental results and results of renormalization group calculations.Comment: self-unpacking uuencoded PostScript file (for instructions see the beginning of the file), 18 pages

    Duality and Universality for the Chern-Simons bosons

    Full text link
    By mapping the relativistic version of the Chern-Simons-Landau-Ginzburg theory in 2+1 dimensions to the 3D lattice Villain x-y model coupled with the Chern-Simons gauge field, we investigate phase transitions of Chern-Simons bosons in the limit of strong coupling. We construct algebraically exact duality and flux attachment transformations of the lattice theories, corresponding to analogous transformations in the continuum limit. These transformations are used to convert the model with arbitrary fractional Chern-Simons coefficient α\alpha to a model with α\alpha either zero or one. Depending on this final value of α\alpha, the phase transition in the original model is either in the universality class of the 3D x-y model or a ``fermionic'' universality class, unless the irrelevant corrections of cubic and higher power in momenta render the transition of the first order.Comment: 14 two-column pages, revtex 3.0, multicol and epsf.sty (optional), one PostScript figure, Submitted to Phys. Rev. B The changes intended to simplify the arguments and eliminate logical gaps. We also show how the filling factor ν\nu is changed by the duality transformatio
    corecore