28 research outputs found

    Scaling of thermal conductivity of helium confined in pores

    Full text link
    We have studied the thermal conductivity of confined superfluids on a bar-like geometry. We use the planar magnet lattice model on a lattice H×H×LH\times H\times L with L≫HL \gg H. We have applied open boundary conditions on the bar sides (the confined directions of length HH) and periodic along the long direction. We have adopted a hybrid Monte Carlo algorithm to efficiently deal with the critical slowing down and in order to solve the dynamical equations of motion we use a discretization technique which introduces errors only O((ÎŽt)6)O((\delta t)^6) in the time step ÎŽt\delta t. Our results demonstrate the validity of scaling using known values of the critical exponents and we obtained the scaling function of the thermal resistivity. We find that our results for the thermal resistivity scaling function are in very good agreement with the available experimental results for pores using the tempComment: 5 two-column pages, 3 figures, Revtex

    Percolation properties of the 2D Heisenberg model

    Get PDF
    We analyze the percolation properties of certain clusters defined on configurations of the 2--dimensional Heisenberg model. We find that, given any direction \vec{n} in O(3) space, the spins almost perpendicular to \vec{n} form a percolating cluster. This result gives indications of how the model can avoid a previously conjectured Kosterlitz-Thouless phase transition at finite temperature T.Comment: 4 pages, 3 eps figures. Revised version (more clear abstract, some new references

    Classical Phase Fluctuations in High Temperature Superconductors

    Full text link
    Phase fluctuations of the superconducting order parameter play a larger role in the cuprates than in conventional BCS superconductors because of the low superfluid density of a doped insulator. In this paper, we analyze an XY model of classical phase fluctuations in the high temperature superconductors using a low-temperature expansion and Monte Carlo simulations. In agreement with experiment, the value of the superfluid density at temperature T=0 is a quite robust predictor of Tc, and the evolution of the superfluid density with T, including its T-linear behavior at low temperature, is insensitive to microscopic details.Comment: 4 pages, 1 figur

    Hidden degree of freedom and critical states in a two-dimensional electron gas in the presence of a random magnetic field

    Full text link
    We establish the existence of a hidden degree of freedom and the critical states of a spinless electron system in a spatially-correlated random magnetic field with vanishing mean. Whereas the critical states are carried by the zero-field contours of the field landscape, the hidden degree of freedom is recognized as being associated with the formation of vortices in these special contours. It is argued that, as opposed to the coherent backscattering mechanism of weak localization, a new type of scattering processes in the contours controls the underlying physics of localization in the random magnetic field system. In addition, we investigate the role of vortices in governing the metal-insulator transition and propose a renormalization-group diagram for the system under study.Comment: 17 pages, 16 figures; Figs. 1, 7, 9, and 10 have been reduced in quality for e-submissio

    Critical behavior of the three-dimensional XY universality class

    Full text link
    We improve the theoretical estimates of the critical exponents for the three-dimensional XY universality class. We find alpha=-0.0146(8), gamma=1.3177(5), nu=0.67155(27), eta=0.0380(4), beta=0.3485(2), and delta=4.780(2). We observe a discrepancy with the most recent experimental estimate of alpha; this discrepancy calls for further theoretical and experimental investigations. Our results are obtained by combining Monte Carlo simulations based on finite-size scaling methods, and high-temperature expansions. Two improved models (with suppressed leading scaling corrections) are selected by Monte Carlo computation. The critical exponents are computed from high-temperature expansions specialized to these improved models. By the same technique we determine the coefficients of the small-magnetization expansion of the equation of state. This expansion is extended analytically by means of approximate parametric representations, obtaining the equation of state in the whole critical region. We also determine the specific-heat amplitude ratio.Comment: 61 pages, 3 figures, RevTe

    Path integral Monte Carlo simulation of the second layer of helium-4 adsorbed on graphite

    Full text link
    We have developed a path integral Monte Carlo method for simulating helium films and apply it to the second layer of helium adsorbed on graphite. We use helium-helium and helium-graphite interactions that are found from potentials which realistically describe the interatomic interactions. The Monte Carlo sampling is over both particle positions and permutations of particle labels. From the particle configurations and static structure factor calculations, we find that this layer possesses, in order of increasing density, a superfluid liquid phase, a sqrt(7) x sqrt(7) commensurate solid phase that is registered with respect to the first layer, and an incommensurate solid phases. By applying the Maxwell construction to the dependence of the low-temperature total energy on the coverage, we are able to identify coexistence regions between the phases. From these, we deduce an effectively zero-temperature phase diagram. Our phase boundaries are in agreement with heat capacity and torsional oscillator measurements, and demonstrate that the experimentally observed disruption of the superfluid phase is caused by the growth of the commensurate phase. We further observe that the superfluid phase has a transition temperature consistent with the two-dimensional value. Promotion to the third layer occurs for densities above 0.212 atom/A^2, in good agreement with experiment. Finally, we calculate the specific heat for each phase and obtain peaks at temperatures in general agreement with experiment.Comment: 14 double-column pages, 10 figures, revtex. Accepted for publication in Phys. Rev. B. 3 figures added, some text revisions, 6 figures remove

    Collagen concentration and biomechanical properties of samples from the lower uterine cervix in relation to age and parity in non-pregnant women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During normal pregnancy the cervix has a load bearing function. The cervical tissue consists mainly of an extracellular matrix (ECM) rich in collagen; important for the biomechanical properties. The aim of the present study was to evaluate how the biomechanical strength of samples from the distal cervix is associated with collagen content in relation to age and parity. This study demonstrates a method to investigate cervical tissue from women who still have their uterus in situ.</p> <p>Methods</p> <p>Cervical punch biopsies (2 × 15 mm) were obtained from 57 healthy women (median age: 39 years, range: 29-49 years). Biomechanical tensile testing was performed, and collagen concentration (as % of dry defatted weight (DDW)) and content (mg of collagen per mm of specimen length) was determined. Histomorphometry was used to determine the volume densities of extracellular matrix and smooth muscle cells. Smooth muscle cells were identified by immunohistochemistry. Finally, orientation of collagen fibers was estimated. Data are given as mean +/- SD.</p> <p>Results</p> <p>The mean collagen concentration (62.2 +/- 6.6%) increased with age (0.5% per year, r = 0.45, p = 0.003) and decreased with parity (1.7% per birth, r = -0.45, p = 0.033). Maximum load was positively correlated with collagen content (mg of collagen per mm of specimen length) (r = 0.76, p < 0.001). Normalized maximum stiffness was increased with age (r = 0.32, p = 0.017), whereas no correlation was found with regard to parity. In tissue samples with a length of approximately one cm, volume density of smooth muscle cells increased gradually from 8.9% in the distal part near the epithelium, to 15.5% in the proximal part (p < 0.001).</p> <p>Conclusions</p> <p>The present study shows that cervical collagen concentration increases with age and decreases with parity in non-pregnant women. In addition, collagen stiffness increased with age, whereas no change in collagen tensile strength with respect to age and parity was found. These results show that collagen contributes to cervical tissue tensile strength and age and parity should be considered confounding factors.</p

    Scaling and nonscaling finite-size effects in the Gaussian and the mean spherical model with free boundary conditions

    Full text link
    We calculate finite-size effects of the Gaussian model in a L\times \tilde L^{d-1} box geometry with free boundary conditions in one direction and periodic boundary conditions in d-1 directions for 2<d<4. We also consider film geometry (\tilde L \to \infty). Finite-size scaling is found to be valid for d3 but logarithmic deviations from finite-size scaling are found for the free energy and energy density at the Gaussian upper borderline dimension d* =3. The logarithms are related to the vanishing critical exponent 1-\alpha-\nu=(d-3)/2 of the Gaussian surface energy density. The latter has a cusp-like singularity in d>3 dimensions. We show that these properties are the origin of nonscaling finite-size effects in the mean spherical model with free boundary conditions in d>=3 dimensions. At bulk T_c in d=3 dimensions we find an unexpected non-logarithmic violation of finite-size scaling for the susceptibility \chi \sim L^3 of the mean spherical model in film geometry whereas only a logarithmic deviation \chi\sim L^2 \ln L exists for box geometry. The result for film geometry is explained by the existence of the lower borderline dimension d_l = 3, as implied by the Mermin-Wagner theorem, that coincides with the Gaussian upper borderline dimension d*=3. For 3<d<4 we find a power-law violation of scaling \chi \sim L^{d-1} at bulk T_c for box geometry and a nonscaling temperature dependence \chi_{surface} \sim \xi^d of the surface susceptibility above T_c. For 2<d<3 dimensions we show the validity of universal finite-size scaling for the susceptibility of the mean spherical model with free boundary conditions for both box and film geometry and calculate the corresponding universal scaling functions for T>=T_c.Comment: Submitted to Physical Review
    corecore