7 research outputs found

    Comparative genome analysis: selection pressure on the Borrelia vls cassettes is essential for infectivity

    Get PDF
    BACKGROUND: At least three species of Borrelia burgdorferi sensu lato (Bbsl) cause tick-borne Lyme disease. Previous work including the genome analysis of B. burgdorferi B31 and B. garinii PBi suggested a highly variable plasmid part. The frequent occurrence of duplicated sequence stretches, the observed plasmid redundancy, as well as the mainly unknown function and variability of plasmid encoded genes rendered the relationships between plasmids within and between species largely unresolvable. RESULTS: To gain further insight into Borreliae genome properties we completed the plasmid sequences of B. garinii PBi, added the genome of a further species, B. afzelii PKo, to our analysis, and compared for both species the genomes of pathogenic and apathogenic strains. The core of all Bbsl genomes consists of the chromosome and two plasmids collinear between all species. We also found additional groups of plasmids, which share large parts of their sequences. This makes it very likely that these plasmids are relatively stable and share common ancestors before the diversification of Borrelia species. The analysis of the differences between B. garinii PBi and B. afzelii PKo genomes of low and high passages revealed that the loss of infectivity is accompanied in both species by a loss of similar genetic material. Whereas B. garinii PBi suffered only from the break-off of a plasmid end, B. afzelii PKo lost more material, probably an entire plasmid. In both cases the vls gene locus encoding for variable surface proteins is affected. CONCLUSION: The complete genome sequences of a B. garinii and a B. afzelii strain facilitate further comparative studies within the genus Borrellia. Our study shows that loss of infectivity can be traced back to only one single event in B. garinii PBi: the loss of the vls cassettes possibly due to error prone gene conversion. Similar albeit extended losses in B. afzelii PKo support the hypothesis that infectivity of Borrelia species depends heavily on the evasion from the host response

    Improvement of Lyme Borreliosis Serodiagnosis by a Newly Developed Recombinant Immunoglobulin G (IgG) and IgM Line Immunoblot Assay and Addition of VlsE and DbpA Homologues

    No full text
    We developed and evaluated a recombinant Borrelia line immunoblot assay based on 18 homologues of seven different antigens, i.e., p100, p58, p41i, BmpA, VlsE, OspC, and DbpA. Each recombinant antigen can be detected separately and is distinct even from homologues with identical molecular weights. This blot was compared to the recently described recombinant Borrelia Western immunoblot assay (U. Schulte-Spechtel, G. Lehnert, G. Liegl, V. Fingerle, C. Heimerl, B. J. Johnson, and B. Wilske, J. Clin. Microbiol. 41:1299-1303, 2003). To verify sensitivity and specificity, both blots were evaluated for reactivity with Borrelia-specific immunoglobulin G (IgG) and IgM antibodies with 85 sera from patients with different manifestations of Lyme borreliosis and 110 controls. According to European interpretation criteria for Borrelia Western blots, which define a serum as positive when it recognizes at least two bands, sensitivity increased significantly from 70.6% (Western blot) to 84.7% (line blot) for IgG (P = 0.042) and from 40.0% (Western blot) to 73.8% (line blot) for IgM (P < 0.005). The increased sensitivity for IgG detection is due to the new line blot technique, whereas the improvement in detection of IgM is mainly achieved through incorporation of the additional antigens. Notably, the recombinant VlsE of Borrelia garinii strain PBi displayed the highest sensitivity of all antigens tested for IgG detection and is also one of the most useful antigens for IgM. Due to its excellent sensitivity and specificity combined with ease of evaluation, this line immunoblot assay offers a useful improvement in serodiagnosis of Lyme borreliosis

    Significant Improvement of the Recombinant Borrelia-Specific Immunoglobulin G Immunoblot Test by Addition of VlsE and a DbpA Homologue Derived from Borrelia garinii for Diagnosis of Early Neuroborreliosis

    No full text
    We investigated whether the recombinant Borrelia Western blot test previously described (B. Wilske, C. Habermann, V. Fingerle, B. Hillenbrand, S. Jauris-Heipke, G. Lehnert, I. Pradel, D. Rössler, and U. Schulte-Spechtel, Med. Microbiol. Immunol. 188:139-144, 1999) can be improved by the addition of VlsE and additional DbpA and OspC homologues. By using a panel of sera from 36 neuroborreliosis patients and 67 control patients, the diagnostic sensitivity of the recombinant immunoblot test was significantly increased (86.1% versus 52.7%) without loss of specificity and was higher (86.1% versus 63.8%) than that of the conventional whole-cell lysate immunoblot test (U. Hauser, G. Lehnert, R. Lobentanzer, and B. Wilske, J. Clin. Microbiol. 35:1433-1444, 1997). Improvement was mainly due to the presence of VlsE and DbpA

    Human pathogenic Borrelia spielmanii sp. nov. resists complement-mediated killing by direct binding of immune regulators factor H and factor H-like protein 1

    No full text
    Borrelia spielmanii sp. nov. has recently been shown to be a novel human pathogenic genospecies that causes Lyme disease in Europe. In order to elucidate the immune evasion mechanisms of B. spielmanii, we compared the abilities of isolates obtained from Lyme disease patients and tick isolate PC-Eq17 to escape from complement-mediated bacteriolysis. Using a growth inhibition assay, we show that four B. spielmanii isolates, including PC-Eq17, are serum resistant, whereas a single isolate, PMew, was more sensitive to complement-mediated lysis. All isolates activated complement in vitro, as demonstrated by covalent attachment of C3 fragments; however, deposition of the later activation products C6 and C5b-9 was restricted to the moderately serum-resistant isolate PMew and the serum-sensitive B. garinii isolate G1. Furthermore, serum adsorption experiments revealed that all B. spielmanii isolates acquired the host alternative pathway regulators factor H and factor H-like protein (FHL-1) from human serum. Both complement regulators retained their factor I-mediated C3b inactivation activities when bound to spirochetes. In addition, two distinct factor H and FHL-1 binding proteins, BsCRASP-1 and BsCRASP-2, were identified, which we estimated to be approximately 23 to 25 kDa in mass. A further factor H binding protein, BsCRASP-3, was found exclusively in the tick isolate, PC-Eq17. This is the first report describing an immune evasion mechanism utilized by B. spielmanii sp. nov., and it demonstrates the capture of human immune regulators to resist complement-mediated killing. Copyright © 2007, American Society for Microbiology. All Rights Reserved
    corecore