327 research outputs found
Evidence for a three-nucleon-force effect in proton-deuteron elastic scattering
Developments in spin-polarized internal targets for storage rings have
permitted measurements of 197 MeV polarized protons scattering from vector
polarized deuterons. This work presents measurements of the polarization
observables A_y, iT_11, and C_y,y in proton-deuteron elastic scattering. When
compared to calculations with and without three-nucleon forces, the
measurements indicate that three-nucleon forces make a significant contribution
to the observables. This work indicates that three-body forces derived from
static nuclear properties appear to be crucial to the description of dynamical
properties.Comment: 8 pages 2 figures Latex, submitted to Phys. Rev. Letter
Cerebrovascular endothelial cells form transient Notch‐dependent cystic structures in zebrafish
We identify a novel endothelial membrane behaviour in transgenic zebrafish. Cerebral blood vessels extrude large transient spherical structures that persist for an average of 23 min before regressing into the parent vessel. We term these structures “kugeln”, after the German for sphere. Kugeln are only observed arising from the cerebral vessels and are present as late as 28 days post fertilization. Kugeln do not communicate with the vessel lumen and can form in the absence of blood flow. They contain little or no cytoplasm, but the majority are highly positive for nitric oxide reactivity. Kugeln do not interact with brain lymphatic endothelial cells (BLECs) and can form in their absence, nor do they perform a scavenging role or interact with macrophages. Inhibition of actin polymerization, Myosin II, or Notch signalling reduces kugel formation, while inhibition of VEGF or Wnt dysregulation (either inhibition or activation) increases kugel formation. Kugeln represent a novel Notch‐dependent NO‐containing endothelial organelle restricted to the cerebral vessels, of currently unknown function
Cross Section Measurements of Charged Pion Photoproduction in Hydrogen and Deuterium from 1.1 to 5.5 GeV
The differential cross section for the gamma +n --> pi- + p and the gamma + p
--> pi+ n processes were measured at Jefferson Lab. The photon energies ranged
from 1.1 to 5.5 GeV, corresponding to center-of-mass energies from 1.7 to 3.4
GeV. The pion center-of-mass angles varied from 50 degree to 110 degree. The
pi- and pi+ photoproduction data both exhibit a global scaling behavior at high
energies and high transverse momenta, consistent with the constituent counting
rule prediction and the existing pi+ data. The data suggest possible
substructure of the scaling behavior, which might be oscillations around the
scaling value. The data show an enhancement in the scaled cross section at
center-of-mass energy near 2.2 GeV. The differential cross section ratios at
high energies and high transverse momenta can be described by calculations
based on one-hard-gluon-exchange diagrams.Comment: 18 pages, 19 figure
Deep exclusive electroproduction off the proton at CLAS
The exclusive electroproduction of above the resonance region was
studied using the Large Acceptance Spectrometer () at
Jefferson Laboratory by scattering a 6 GeV continuous electron beam off a
hydrogen target. The large acceptance and good resolution of ,
together with the high luminosity, allowed us to measure the cross section for
the process in 140 (, , ) bins:
, 1.6 GeV GeV and 0.1 GeV
GeV. For most bins, the statistical accuracy is on the order of a few
percent. Differential cross sections are compared to two theoretical models,
based either on hadronic (Regge phenomenology) or on partonic (handbag diagram)
degrees of freedom. Both can describe the gross features of the data reasonably
well, but differ strongly in their ingredients. If the handbag approach can be
validated in this kinematical region, our data contain the interesting
potential to experimentally access transversity Generalized Parton
Distributions.Comment: 18pages, 21figures,2table
Nuclear transparency with the γn⃗π-p process in 4He
We have measured the nuclear transparency of the fundamental process γn⃗π-p in 4He. These measurements were performed at Jefferson Lab in the photon energy range of 1.6–4.5 GeV and at θcmπ=70° and 90°. These measurements are the first of their kind in the study of nuclear transparency in photoreactions. They also provide a benchmark test of Glauber calculations based on traditional models of nuclear physics. The transparency results suggest deviations from the traditional nuclear physics picture. The momentum transfer dependence of the measured nuclear transparency is consistent with Glauber calculations that include the quantum chromodynamics phenomenon of color transparency
High Precision Measurement of the Proton Elastic Form Factor Ratio at low
We report a new, high-precision measurement of the proton elastic form factor
ratio \mu_p G_E/G_M for the four-momentum transfer squared Q^2 = 0.3-0.7
(GeV/c)^2. The measurement was performed at Jefferson Lab (JLab) in Hall A
using recoil polarimetry. With a total uncertainty of approximately 1%, the new
data clearly show that the deviation of the ratio \mu_p G_E/G_M from unity
observed in previous polarization measurements at high Q^2 continues down to
the lowest Q^2 value of this measurement. The updated global fit that includes
the new results yields an electric (magnetic) form factor roughly 2% smaller
(1% larger) than the previous global fit in this Q^2 range. We obtain new
extractions of the proton electric and magnetic radii, which are
^(1/2)=0.875+/-0.010 fm and ^(1/2)=0.867+/-0.020 fm. The charge
radius is consistent with other recent extractions based on the electron-proton
interaction, including the atomic hydrogen Lamb shift measurements, which
suggests a missing correction in the comparison of measurements of the proton
charge radius using electron probes and the recent extraction from the muonic
hydrogen Lamb shift.Comment: 12 pages, 3 figure
Identification of common genetic risk variants for autism spectrum disorder
Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.Peer reviewe
Reproducibility in the absence of selective reporting : An illustration from large-scale brain asymmetry research
Altres ajuts: Max Planck Society (Germany).The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes
- …