67 research outputs found
Danish Water Supply Areas and their links to water production facilities: an open-access data set
This data set establishes the missing link between drinking-water quality monitoring data at the water production facility level in the Danish national geodatabase Jupiter and supply areas. Water Supply Areas (WSAs) were collected at municipality level, digitised and linked to the waterworks they are supplied by. Infrastructural changes between 1978 and 2019 were taken into account by allowing WSA polygons to change over time. The number of active WSAs decreased from 3172 in 1978 to 2602 in 2019. The data set consists of longitudinal WSA polygons and a table linking WSAs to the water production facility identification in the Jupiter database, allowing the estimation of current and historical drinking-water quality across Denmark. In combination with the Danish Address Register and the Civil Registration System, this data set allows exposure assessments of drinking-water quality at high spatiotemporal resolution for the entire Danish population. Therefore, this data set is an essential part of studying health effects of drinking-water quality in epidemiological research in Denmark
Lithium in drinking water and incidence of suicide:A nationwide individual-level cohort study with 22 years of follow-up
Suicide is a major public health concern. High-dose lithium is used to stabilize mood and prevent suicide in patients with affective disorders. Lithium occurs naturally in drinking water worldwide in much lower doses, but with large geographical variation. Several studies conducted at an aggregate level have suggested an association between lithium in drinking water and a reduced risk of suicide; however, a causal relation is uncertain. Individual-level register-based data on the entire Danish adult population (3.7 million individuals) from 1991 to 2012 were linked with a moving five-year time-weighted average (TWA) lithium exposure level from drinking water hypothesizing an inverse relationship. The mean lithium level was 11.6 μg/L ranging from 0.6 to 30.7 μg/L. The suicide rate decreased from 29.7 per 100,000 person-years at risk in 1991 to 18.4 per 100,000 person-years in 2012. We found no significant indication of an association between increasing five-year TWA lithium exposure level and decreasing suicide rate. The comprehensiveness of using individual-level data and spatial analyses with 22 years of follow-up makes a pronounced contribution to previous findings. Our findings demonstrate that there does not seem to be a protective effect of exposure to lithium on the incidence of suicide with levels below 31 μg/L in drinking water
Source-specific nitrate and nitrite intakes and associations with sociodemographic factors in the Danish diet cancer and health cohort
Background: The dietary source and intake levels of nitrate and nitrite may govern its deleterious versus beneficial effects on human health. Existing evidence on detailed source-specific intake is limited. The objectives of this study were to assess nitrate and nitrite intakes from different dietary sources (plant-based foods, animal-based foods, and water), characterize the background diets of participants with low and high intakes, and investigate how sociodemographic and lifestyle factors associate with intake levels. Methods: In the Danish Diet, Cancer and Health Cohort, sociodemographic and lifestyle information was obtained from participants at enrolment (1993–1997). Source-dependent nitrate and nitrite intakes were calculated using comprehensive food composition databases, with tap water nitrate intakes estimated via the national drinking water quality monitoring database linked with participants’ residential addresses from 1978 to 2016. Underlying dietary patterns were examined using radar plots comparing high to low consumers while sociodemographic predictors of source-dependent nitrate intakes were investigated using linear regression models. Results: In a Danish cohort of 55,754 participants aged 50–65 at enrolment, the median [IQR] intakes of dietary nitrate and nitrite were 58.13 [44.27–74.90] mg/d and 1.79 [1.43–2.21] mg/d, respectively. Plant-based foods accounted for ~76% of nitrate intake, animal-based foods ~10%, and water ~5%. Nitrite intake was sourced roughly equally from plants and animals. Higher plant-sourced nitrate intake was associated with healthier lifestyles, better dietary patterns, more physical activity, higher education, lower age and lower BMI. Females and participants who had never smoked also had significantly higher plant-sourced nitrate intakes. Higher water-sourced nitrate intake was linked to sociodemographic risk factors (smoking, obesity, lower education). Patterns for animal-sourced nitrate were less clear. Conclusion: Participants with higher plant-sourced nitrate intakes tend to be healthier while participants with higher water-sourced nitrate intakes tended to be unhealthier than their low consuming counterparts. Future research in this cohort should account for the sociodemographic and dietary predictors of source-specific nitrate intake we have identified
Measures to increase the nitrogen use efficiency of European agricultural production
Inputs of nitrogen to agricultural production systems are necessary to produce food, feed and fibre, but nitrogen (N)
losses from those systems represent a waste of a resource and a threat to both the environment and human health.
The nitrogen use efficiency (NUE) of an agricultural production system can be seen as an indicator of the balance
between benefits and costs of primary food, feed and fibre production. Here, we used modelling to follow the fate of
the virgin N input to different production systems (ruminant and granivore meat, dairy, arable), and to estimate
their NUE at the system scale. We defined two ruminant meat production systems, depending on whether the land
places constraints on farming practices. The other production systems were dairy, granivore and arable production
on land without constraints. Two geographic regions were considered: Northern and Southern Europe. Measures to
improve NUE were identified and allocated to Low, Medium and High ambition groups, with Low equating to the
current situation in Europe for production systems that are broadly following good agricultural practice.
The NUE of the production systems was similar to or higher in Southern than Northern Europe, with the
maximum technical NUEs if all available measures are implemented were for North and South Europe, respectively,
82% and 92% for arable systems, 71% and 80% for granivores, 50% and 36% for ruminant meat
production on constrained land, 53% and 55% for dairy production on unconstrained land and 46% and 62% for
ruminant meat production on unconstrained land. The values for NUE found here tend to be higher than reported
elsewhere, possibly due to the accounting for long-term residual effects of fertiliser and manure in our
method. The greatest increase in NUE with the progressive implementation of higher ambition measures was in
unconstrained granivore systems and the least was in constrained ruminant meat systems, reflecting the lower
initial NUE of granivore systems and the larger number of measures applicable to confined livestock systems.
Our work supports use of NUE as an indicator of the temporal trend in the costs and benefits of existing
agricultural production systems, but highlights problems associated with its use as a sustainability criteria for
livestock production systems.
For arable systems, we consider well-founded the NUE value of 90% above which there is a high risk of soil N
depletion, provided many measures to increase NUE are employed. For systems employing fewer measures, we
suggest a value of 70% would be more appropriate.
We conclude that while it is feasible to calculate the NUE of livestock production systems, the additional
complexity required reduces its value as an indicator for benchmarking sustainability in practical agricultureinfo:eu-repo/semantics/publishedVersio
Source-specific nitrate intake and all-cause mortality in the Danish diet, cancer, and health study
Introduction: Nitrate and nitrite are naturally occurring in both plant- and animal-sourced foods, are used as additives in the processing of meat, and are found in water. There is growing evidence that they exhibit a spectrum of health effects, depending on the dietary source. The aim of the study was to examine source-dependent associations between dietary intakes of nitrate/nitrite and both all-cause and cause-specific mortality. Methods: In 52,247 participants of the Danish Diet, Cancer and Health Study, associations between source-dependent nitrate and nitrite intakes––calculated using comprehensive food composition and national drinking water quality monitoring databases––and all-cause, cardiovascular disease (CVD)-related, and cancer-related mortality over 27 years were examined using restricted cubic splines within Cox proportional hazards models adjusting for demographic, lifestyle, and dietary confounders. Analyses were stratified by factors hypothesised to influence the formation of carcinogenic N-nitroso compounds (namely, smoking and dietary intakes of vitamin C, vitamin E, folate, and polyphenols). Results: Plant-sourced nitrate intake was inversely associated with all-cause mortality [HRQ5vsQ1: 0.83 (0.80, 0.87)] while higher risks of all-cause mortality were seen for higher intakes of naturally occurring animal-sourced nitrate [1.09 (1.04, 1.14)], additive permitted meat-sourced nitrate [1.19 (1.14, 1.25)], and tap water-sourced nitrate [1.19 (1.14, 1.25)]. Similar source-dependent associations were seen for nitrite and for CVD-related and cancer-related mortality except that naturally occurring animal-sourced nitrate and tap water-sourced nitrate were not associated with cancer-related mortality and additive permitted meat-sourced nitrate was not associated with CVD-related mortality. No clear patterns emerged in stratified analyses. Conclusion: Nitrate/nitrite from plant sources are inversely associated while those from naturally occurring animal-sources, additive-permitted meat sources, and tap water-sources are positively associated with mortality
Analysis of the geological control on the spatial distribution of potentially toxic concentrations of As and F- in groundwater on a Pan-European scale
The distribution of the high concentrations of arsenic (As) and fluoride (F-) in groundwater on a Pan-European scale could be explained by the geological European context (lithology and structural faults). To test this hypothesis, seventeen countries and eighteen geological survey organizations (GSOs) have participated in the dataset. The methodology has used the HydroGeoToxicity (HGT) and the Baseline Concentration (BLC) index. The results prove that most of the waters considered in this study are in good conditions for drinking water consumption, in terms of As and/or F- content. A low proportion of the analysed samples present HGT≥ 1 levels (4% and 7% for As and F-, respectively). The spatial distribution of the highest As and/or F- concentrations (via BLC values) has been analysed using GIS tools. The highest values are identified associated with fissured hard rock outcrops (crystalline rocks) or Cenozoic sedimentary zones, where basement fractures seems to have an obvious control on the distribution of maximum concentrations of these elements in groundwaters.This research was co-funded by the European Union’s Horizon 2020 research and innovation program (GeoERA HOVER project) under grant agreement number 731166. D. Voutchkova, B. Hansen, and J. Schullehner were also supported by Innovation Fund Denmark (funding agreement number 8055- 00073B). N. Rman participation was supported by the Slovenian Research Agency, research program P1-0020 Groundwaters and Geochemistry. A. Felter, J. Cabalska and A. Mikołajczyk participation was supported by the Polish Ministry of Education and Science. E. Giménez-Forcada is grateful for the support received from the CIPROM/2021/032 Project. Valencian Government. University of Valencia (Spain)
Operons
Operons (clusters of co-regulated genes with related functions) are common features of bacterial genomes. More recently, functional gene clustering has been reported in eukaryotes, from yeasts to filamentous fungi, plants, and animals. Gene clusters can consist of paralogous genes that have most likely arisen by gene duplication. However, there are now many examples of eukaryotic gene clusters that contain functionally related but non-homologous genes and that represent functional gene organizations with operon-like features (physical clustering and co-regulation). These include gene clusters for use of different carbon and nitrogen sources in yeasts, for production of antibiotics, toxins, and virulence determinants in filamentous fungi, for production of defense compounds in plants, and for innate and adaptive immunity in animals (the major histocompatibility locus). The aim of this article is to review features of functional gene clusters in prokaryotes and eukaryotes and the significance of clustering for effective function
Nitrate exposure from drinking water in Denmark over the last 35 years
In Denmark, drinking water quality data covering the entire country for over 35 years are registered in a publicly-accessible database. These data were analysed to determine the fraction of population exposed to elevated nitrate concentrations. Data from 2,852 water supply areas from the 98 Danish municipalities were collected in one dataset. Public water supplies are extensively registered; private wells supplying only few households are neither monitored nor registered sufficiently. The study showed that 5.1% of the Danish population was exposed to nitrate concentrations 25 mg L ^−1 in 2012. Private well users were far more prone to exposure to elevated nitrate concentrations than consumers connected to public supplies. While the fraction exposed to elevated nitrate concentrations amongst public supply users has been decreasing since the 1970s, it has been increasing amongst private well users, leading to the hypothesis that the decrease in nitrate concentrations in drinking water is mainly due to structural changes and not improvement of the groundwater quality. A combination of this new drinking water quality map with extensive Danish health registers would permit an epidemiological study on health effects of nitrate, as long as the lack of data on private well users is addressed
Nitrate, Nitrite, and Ammonium Variability in Drinking Water Distribution Systems
Accurate assessments of exposure to nitrate in drinking water is a crucial part of epidemiological studies investigating long-term adverse human health effects. However, since drinking water nitrate measurements are usually collected for regulatory purposes, assumptions on (1) the intra-distribution system variability and (2) short-term (seasonal) concentration variability have to be made. We assess concentration variability in the distribution system of nitrate, nitrite, and ammonium, and seasonal variability in all Danish public waterworks from 2007 to 2016. Nitrate concentrations at the exit of the waterworks are highly correlated with nitrate concentrations within the distribution net or at the consumers’ taps, while nitrite and ammonium concentrations are generally lower within the net compared with the exit of the waterworks due to nitrification. However, nitrification of nitrite and ammonium in the distribution systems only results in a relatively small increase in nitrate concentrations. No seasonal variation for nitrate, nitrite, or ammonium was observed. We conclude that nitrate measurements taken at the exit of the waterworks are suitable to calculate exposures for all consumers connected to that waterworks and that sampling frequencies in the national monitoring programme are sufficient to describe temporal variations in longitudinal studies
Stability of Major Geogenic Cations in Drinking Water—An Issue of Public Health Importance: A Danish Study, 1980–2017
Concentrations and spatial variations of the four cations Na, K, Mg and Ca are known to some extent for groundwater and to a lesser extent for drinking water. Using Denmark as case, the purpose of this study was to analyze the spatial and temporal variations in the major cations in drinking water. The results will contribute to a better exposure estimation in future studies of the association between cations and diseases. Spatial and temporal variations and the association with aquifer types, were analyzed with spatial scan statistics, linear regression and a multilevel mixed-effects linear regression model. About 65,000 water samples of each cation (1980–2017) were included in the study. Results of mean concentrations were 31.4 mg/L, 3.5 mg/L, 12.1 mg/L and 84.5 mg/L for 1980–2017 for Na, K, Mg and Ca, respectively. An expected west-east trend in concentrations were confirmed, mainly explained by variations in aquifer types. The trend in concentration was stable for about 31–45% of the public water supply areas. It is therefore recommended that the exposure estimate in future health related studies not only be based on a single mean value, but that temporal and spatial variations should also be included
- …