39 research outputs found

    Smooth Muscle and Extracellular Matrix Interactions in Health and Disease

    Get PDF
    Alterations in smooth muscle cell function and phenotype contribute to tissue remodeling in various pathologies including obstructive lung (e.g., asthma) and vascular (e.g., atherosclerosis) diseases. The extracellular matrix (ECM) is a major influence on the biology of smooth muscle cells, being an important support structure that provides signaling cues through its biochemical and biophysical properties. ECM factors activate biochemical and mechano-transduction signaling pathways, which modulate smooth muscle cell contraction, stiffness, survival, growth, cytokine production and migration (i.e., cellular processes which contribute to changes in tissue architecture). The interaction of the ECM with smooth muscle cells is a dynamic multi-directional process, as smooth muscle cells also produce ECM protein, as well as proteases and cross-linking enzymes which regulate ECM form and structure. Understanding the molecular basis of ECM modifications and their impact on smooth muscle cell function in disease may lead to the development of novel therapies. This chapter reviews interactions between the ECM and smooth muscle cell and how they become altered in disease, using obstructive lung and vascular diseases as examples. From a pharmacological and therapeutic perspective, strategies that alter the phenotype of the smooth muscle cell in disease will be discussed. Emphasis will be given to approaches that target the proteases and mediators of ECM-smooth muscle cell signaling as potential treatments for pulmonary and vascular disease. Proteases of the coagulation and plasminogen activation systems have been given particular attention as they not only have a role in forming and modifying ECM, but also can directly stimulate changes in smooth muscle cell function and phenotype via activating receptors such as the protease-activated receptor-1 (PAR-1) and integrins

    Steroidogenesis in cultured mammalian glial cells

    Full text link
    A protocol for culturing mammalian type 1 astrocytic cells, using female post-natal rat cerebral cortical tissue, was established and refined for use in steroidogenic metabolic studies incorporating progestin radioisotopes. Cultures were characterised for homogeneity using standard morphological and immunostaining techniques. Qualitative and quantitative studies were conducted to characterise the progesterone (P) metabolic pathways present in astrocytes in vitro. Of particular interest was the formation of the P metabolite, 5á-pregnan-3á-ol-20-one (THP). THP is a GABA(A) receptor agonist, believed to play a vital role in neural functioning and CNS homeostasis. One aim of this study was to observe any modulatory effects selected neuroactive ligands have on the conversion of P into THP, in an attempt to link astrocytic steroidogenesis with neuronal control. In qualitative studies, chromatographic procedures were used to establish the progestin profile of cerebral cortical astrocytes. Tritiated P, DHP (5á-pregnan-3,20-dione) and THP incurbates were preliminary fractionated by either normal phase (NP) or reverse phase (RP) high performance liquid chromatography (HPLC). The radiometabolites associated with each fraction were further chromatographed, before and/or after chemical derivatistation, by the aforemention HPLC procedures and thin layer chromatography (TLC). Steroid radiometabolites were tentatively identified by comparing their chromatographic mobility with authentic steroids. The identity of the main putative 5á-reduced P metabolities, DHP, THP and 5á-pregnan-3á,20á-diol (20áOH-THP) were further confirmed by isotopic dilution analysis. Their conclusive identification, along with the tentative identification of 20á-hydroxypreg-4-en-3-one (20áOH-P) and 20á-hydroxy-5á-pregnan-3-one (20áOH-DHP), verify the localisation of 5á-reductase, 3á-hydroxy steroif oxidoreductase (HSOR), and 20á-HSOR activity in the cultured astrocytes utilised in this study programme. Other minor metabolites detected were tentatively identified, including 5á-pregnan-3á,21-diol-20-one (THDoc), indicating the presence of 21-hydroxylase enzymatic activity. THDoc, like THP, is a GABA(A) receptor agonist. The chemical and physical characterisation of several yet unidentified progestin metabolites, associated with a highly polar RP HPLC fraction (designated RP peak 1*), indicate the presence of one or more extra hydroxylase enzymes. Quantitative analysis included a preliminary study. In this study, the percentage yields of radiometabolites formed in cultures incubated with increasing substrate concentrations of (3)H-P for 24 hours were determined. At the lower concentrations examined (ie 0.5 to 50nM), the metabolites associated with the polar RP HPLC fraction (RP peak 1*) collectively have the highest percentage yield. They are subsequently considered metabolic end products of degradative catabolic P pathways. The percentage yield of THP peaks in the medium concentration ranges (ie 5 to 500nM), whereas DHP remains fairly static at a low level with increasing concentration. Both DHP and THP are considered metabolic pathway intermediates. The percentage yield of 20áOH-THP continues to increase with increasing concentration over 5nM, superseding THP approaching the highest concentration examined (5000nM). This indicated the formation of 20áOH-THP does not occur entirely via THP. 20áOH-THP also possibly serves as the direct intermediate in the formation of the main radiometabolites associated with RP peak 1*. A time/yield study incorporating incubation times from one to 24 hours was also conducted. The full array of radiometabolites (individually or in groups) formed in astrocyte cultures incubated with 50nM tritiated P, DHP of THP, were assayed. Cultures were observed to rapidly convert any DHP into THP, showing astrocytic 3á-HSOR activity is very high. The study also showed 5á-reduction (ie the conversation of P into DHP) is the rate limiting reaction in the two step conversion of P into THP. 5á-Reduction also appears to be a rate limiting step in the formation of 20á-hydroxylated metabolites in astrocytes. Cultures incubated with the tritiated 5á-reduced pregnanes from one to four hours form greater quantities to 20á-hydroxylated radiometabolites compared to cultures incubated with (3)H-P. The time yield/studies also provided further evidence the unidentified polar radiometabolites associated with RP peak 1* are metabolic end products. For the P and DHP incubates, the collective formation of the aforementioned polar radiometabolites initially lags behind the formation of THP. As the formation of the latter begins to plateau with increasing time between four to 24 hours, the net yield of radiometabolites associated with RP peak 1* continues to rise. The time/yield studies also indicate 5á-reduction and perhaps 3á-hydroxylation are pre-requisite steps in the formation of the polar metabolites. Cultures incubated with the 5á-reduced progestins from one to four hours form higher yields of the radiometabolites associated with RP peak 1* compared to cultures incubated with P as substrate. The net yields of the radiometabolites associated with RP peak 1* for cultures incubated with THP were substantially higher compared to cultures incubated with DHP after equivalent times. The effect selected neuroligands have on the yield of radiometabolites formed by cultured astrocytes incubated with 50nM (3)H-P was also examined. Dibutyryl cyclic adenosine monophosphate (DBcAMP), not actually a neuroligand per se, but an analog of the intracellular secondary messenger cAMP, was also utilised in these studies. The inhibitory neurotransmitter ă-amino-nbutyric acid (GABA), DBcAMP and isoproterenol (a â-adrenergic receptor agonist) all quickly induce a transient but substantial increase in 20á-HSOR activity in cultured astrocytes. Cultures pretreated with these three compounds (10, 20 and 1µM respectively) form substantially higher yields of 20á-hydroxylated metabolites, including 20áOH-THP (between 200 to 580% greater), when incubated with 50nM (3)H-P for one to four hours. These increases also coincide with increases in the net yield of metabolites formed (by 16 to 48%). The same pre-treated cultures form significantly lower yields of THP, by 25 to 41%, after one hour. This is most likely due to the increased metabolism of any formed THP into 20áOH-THP. Octopamine (an á-adrenergic agonist) only induces a slight increase in 20á-HSOR activity, having relatively little effect on the yield of 20áOH-THP formed. Pretreatment with octopamine induces a significant increase in the yield of THP for cultures incubated with (3)H-P for four hours (by 24%). The increase in THP formation appears to be due to an increase in 3á-HSOR activity, as judged by the concomitant drop in the yield of the 5á-reduced, 3-keto substrates. An increase in 5á-reductase activity cannot be excluded however. Isoproterenol appears to induce an increase in 5á-reductase activity as isoproterenol appears to induce an increase in 5á-reductase activity as isoproterenol one and four hour incubates have higher yields of DHP. This is in contrast to the other three incubates. After 12 hours, all incubates have higher yields of THP (15-30%)

    Regulation of cellular senescence by extracellular matrix during chronic fibrotic diseases

    Get PDF
    The extracellular matrix (ECM) is a complex network of macromolecules surrounding cells providing structural support and stability to tissues. The understanding of the ECM and the diverse roles it plays in development, homoeostasis and injury have greatly advanced in the last three decades. The ECM is crucial for maintaining tissue homoeostasis but also many pathological conditions arise from aberrant matrix remodelling during ageing. Ageing is characterised as functional decline of tissue over time ultimately leading to tissue dysfunction, and is a risk factor in many diseases including cardiovascular disease, diabetes, cancer, dementia, glaucoma, chronic obstructive pulmonary disease (COPD) and fibrosis. ECM changes are recognised as a major driver of aberrant cell responses. Mesenchymal cells in aged tissue show signs of growth arrest and resistance to apoptosis, which are indicative of cellular senescence. It was recently postulated that cellular senescence contributes to the pathogenesis of chronic fibrotic diseases in the heart, kidney, liver and lung. Senescent cells negatively impact tissue regeneration while creating a pro-inflammatory environment as part of the senescence-associated secretory phenotype (SASP) favouring disease progression. In this review, we explore and summarise the current knowledge around how aberrant ECM potentially influences the senescent phenotype in chronic fibrotic diseases. Lastly, we will explore the possibility for interventions in the ECM-senescence regulatory pathways for therapeutic potential in chronic fibrotic diseases.</p

    Substrate stiffness engineered to replicate disease conditions influence senescence and fibrotic responses in primary lung fibroblasts

    Get PDF
    In fibrosis remodelling of ECM leads to changes in composition and stiffness. Such changes can have a major impact on cell functions including proliferation, secretory profile and differentiation. Several studies have reported that fibrosis is characterised by increased senescence and accumulating evidence suggests that changes to the ECM including altered composition and increased stiffness may contribute to premature cellular senescence. This study investigated if increased stiffness could modulate markers of senescence and/or fibrosis in primary human lung fibroblasts. Using hydrogels representing stiffnesses that fall within healthy and fibrotic ranges, we cultured primary fibroblasts from non-diseased lung tissue on top of these hydrogels for up to 7 days before assessing senescence and fibrosis markers. Fibroblasts cultured on stiffer (±15 kPa) hydrogels showed higher Yes-associated protein-1 (YAP) nuclear translocation compared to soft hydrogels. When looking at senescence-associated proteins we also found higher secretion of receptor activator of nuclear factor kappa-B ligand (RANKL) but no change in transforming growth factor-β1 (TGF-β1) or connective tissue growth factor (CTGF) expression and higher decorin protein deposition on stiffer matrices. With respect to genes associated with fibrosis, fibroblasts on stiffer hydrogels compared to soft had higher expression of smooth muscle alpha (α)-2 actin (ACTA2), collagen (COL) 1A1 and fibulin-1 (Fbln1) and higher Fbln1 protein deposition after 7 days. Our results show that exposure of lung fibroblasts to fibrotic stiffness activates genes and secreted factors that are part of fibrotic responses and part of the Senescence-associated secretory phenotype (SASP). This overlap may contribute to the creation of a feedback loop whereby fibroblasts create a perpetuating cycle reinforcing progression of a fibrotic response

    Self DNA perpetuates IPF lung fibroblast senescence in a cGAS-dependent manner

    Get PDF
    Senescence and mitochondrial stress are mutually reinforcing age-related processes that contribute to idiopathic pulmonary fibrosis (IPF); a lethal disease that manifests primarily in the elderly. Whilst evidence is accumulating that GMP-AMP synthase (cGAS) is crucial in perpetuating senescence by binding damaged DNA released into the cytosol, its role in IPF is not known. The present study examines the contributions of cGAS and self DNA to the senescence of lung fibroblasts from IPF patients (IPF-LFs) and age-matched controls (Ctrl-LFs). cGAS immunoreactivity was observed in regions of fibrosis associated with fibroblasts in lung tissue of IPF patients. Pharmacological inhibition of cGAS or its knockdown by silencing RNA (siRNA) diminished the escalation of IPF-LF senescence in culture over 7 days as measured by decreased p21 and p16 expression, histone 2AX? phosphorylation and/or IL-6 production (P &lt; 0.05, n = 5-8). The targeting of cGAS also attenuated etoposide-induced senescence in Ctrl-LFs (P &lt; 0.05, n = 5-8). Levels of mitochondrial DNA (mDNA) detected by qPCR in the cytosol and medium of IPF-LFs or senescence-induced Ctrl-LFs were higher than Ctrl-LFs at baseline (P &lt; 0.05, n = 5-7). The addition of DNAse I (100 U/ml) deaccelerated IPF-LF senescence (P &lt; 0.05, n = 5), whereas ectopic mDNA or the induction of endogenous mDNA release augmented Ctrl-LF senescence in a cGAS-dependent manner (P &lt; 0.05, n = 5). In conclusion, we provide evidence that cGAS reinforces lung fibroblast senescence involving damaged self DNA. The targeting of cGAS to supress senescent-like responses may have potential important therapeutic implications in the treatment of IPF

    Regulation of Cellular Senescence Is Independent from Profibrotic Fibroblast-Deposited ECM

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with poor survival. Age is a major risk factor, and both alveolar epithelial cells and lung fibroblasts in this disease exhibit features of cellular senescence, a hallmark of ageing. Accumulation of fibrotic extracellular matrix (ECM) is a core feature of IPF and is likely to affect cell function. We hypothesize that aberrant ECM deposition augments fibroblast senescence, creating a perpetuating cycle favouring disease progression. In this study, primary lung fibroblasts were cultured on control and IPF-derived ECM from fibroblasts pretreated with or without profibrotic and prosenescent stimuli, and markers of senescence, fibrosis-associated gene expression and secretion of cytokines were measured. Untreated ECM derived from control or IPF fibroblasts had no effect on the main marker of senescence p16(Ink4a) and p21(Waf1/Cip1). However, the expression of alpha smooth muscle actin (ACTA2) and proteoglycan decorin (DCN) increased in response to IPF-derived ECM. Production of the proinflammatory cytokines C-X-C Motif Chemokine Ligand 8 (CXCL8) by lung fibroblasts was upregulated in response to senescent and profibrotic-derived ECM. Finally, the profibrotic cytokines transforming growth factor β1 (TGF-β1) and connective tissue growth factor (CTGF) were upregulated in response to both senescent- and profibrotic-derived ECM. In summary, ECM deposited by IPF fibroblasts does not induce cellular senescence, while there is upregulation of proinflammatory and profibrotic cytokines and differentiation into a myofibroblast phenotype in response to senescent- and profibrotic-derived ECM, which may contribute to progression of fibrosis in IPF

    A cGAS-dependent response links DNA damage and senescence in alveolar epithelial cells:A potential drug target in IPF

    Get PDF
    Alveolar epithelial cell (AEC) senescence is implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Mitochondrial dysfunction including release of mitochondrial DNA (mtDNA) is a feature of senescence, which led us to investigate the role of the DNA-sensing GMP-AMP synthase (cGAS) in IPF, with a focus on AEC senescence. cGAS expression in fibrotic tissue from lungs of IPF patients was detected within cells immunoreactive for epithelial cell adhesion molecule (EpCAM) and p21, epithelial and senescence markers respectively. Submerged primary cultures of AECs isolated from lung tissue of IPF patients (IPF-AECs, n=5) exhibited higher baseline senescence than AECs from control donors (Ctrl-AECs, n=5-7), as assessed by increased nuclear histone 2AXγ phosphorylation, p21 mRNA and expression of senescence-associated secretory phenotype (SASP) cytokines. Pharmacological cGAS inhibition using RU.521 diminished IPF-AEC senescence in culture and attenuated induction of Ctrl-AEC senescence following etoposide-induced DNA damage. Short interfering RNA (siRNA) knockdown of cGAS also attenuated etoposide-induced senescence of the AEC line, A549. Higher levels of mtDNA were detected in the cytosol and culture supernatants of primary IPF- and etoposide-treated Ctrl-AECs when compared to Ctrl-AECs at baseline. Furthermore, ectopic mtDNA augmented cGAS-dependent senescence of Ctrl-AECs, whereas DNAse I treatment diminished IPF-AEC senescence. This study provides evidence that a self-DNA driven, cGAS-dependent response augments AEC senescence, identifying cGAS as a potential therapeutic target for IPF

    The Role of Pathological Aging in Cardiac and Pulmonary Fibrosis

    Get PDF
    Aging promotes a range of degenerative pathologies characterized by progressive losses of tissue and/or cellular function. Fibrosis is the hardening, overgrowth and scarring of various tissues characterized by the accumulation of extracellular matrix components. Aging is an important predisposing factor common for fibrotic heart and respiratory disease. Age-related processes such as senescence, inflammaging, autophagy and mitochondrial dysfunction are interconnected biological processes that diminish the regenerative capacity of the aged heart and lung and have been shown to play a crucial role in cardiac fibrosis and idiopathic pulmonary fibrosis. This review focuses on these four processes of aging in relation to their role in fibrosis. It has long been established that the heart and lung are linked both functionally and anatomically when it comes to health and disease, with an ever-expanding aging population, the incidence of fibrotic disease and therefore the number of fibrosis-related deaths will continue to rise. There are currently no feasible therapies to treat the effects of chronic fibrosis therefore highlighting the importance of exploring the processes of aging and its role in inducing and exacerbating fibrosis of each organ. The focus of this review may help to highlight potential avenues of therapeutic exploration</p

    The Processes and Mechanisms of Cardiac and Pulmonary Fibrosis

    Get PDF
    Fibrosis is the formation of fibrous connective tissue in response to injury. It is characterized by the accumulation of extracellular matrix components, particularly collagen, at the site of injury. Fibrosis is an adaptive response that is a vital component of wound healing and tissue repair. However, its continued activation is highly detrimental and a common final pathway of numerous disease states including cardiovascular and respiratory disease. Worldwide, fibrotic diseases cause over 800,000 deaths per year, accounting for similar to 45% of total deaths. With an aging population, the incidence of fibrotic disease and subsequently the number of fibrosis-related deaths will rise further. Although, fibrosis is a well-recognized cause of morbidity and mortality in a range of disease states, there are currently no viable therapies to reverse the effects of chronic fibrosis. Numerous predisposing factors contribute to the development of fibrosis. Biological aging in particular, interferes with repair of damaged tissue, accelerating the transition to pathological remodeling, rather than a process of resolution and regeneration. When fibrosis progresses in an uncontrolled manner, it results in the irreversible stiffening of the affected tissue, which can lead to organ malfunction and death. Further investigation into the mechanisms of fibrosis is necessary to elucidate novel, much needed, therapeutic targets. Fibrosis of the heart and lung make up a significant proportion of fibrosis-related deaths. It has long been established that the heart and lung are functionally and geographically linked when it comes to health and disease, and thus exploring the processes and mechanisms that contribute to fibrosis of each organ, the focus of this review, may help to highlight potential avenues of therapeutic investigation

    A persistent neutrophil-associated immune signature characterizes post-COVID-19 pulmonary sequelae

    Get PDF
    Interstitial lung disease and associated fibrosis occur in a proportion of individuals who have recovered from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through unknown mechanisms. We studied individuals with severe coronavirus disease 2019 (COVID-19) after recovery from acute illness. Individuals with evidence of interstitial lung changes at 3 to 6 months after recovery had an up-regulated neutrophil-associated immune signature including increased chemokines, proteases, and markers of neutrophil extracellular traps that were detectable in the blood. Similar pathways were enriched in the upper airway with a concomitant increase in antiviral type I interferon signaling. Interaction analysis of the peripheral phosphoproteome identified enriched kinases critical for neutrophil inflammatory pathways. Evaluation of these individuals at 12 months after recovery indicated that a subset of the individuals had not yet achieved full normalization of radiological and functional changes. These data provide insight into mechanisms driving development of pulmonary sequelae during and after COVID-19 and provide a rational basis for development of targeted approaches to prevent long-term complications
    corecore