1,600 research outputs found
Spontaneous generation of spin-orbit coupling in magnetic dipolar Fermi gases
The stability of an unpolarized two-component dipolar Fermi gas is studied
within mean-field theory. Besides the known instability towards spontaneous
magnetization with Fermi sphere deformation, another instability towards
spontaneous formation of a spin-orbit coupled phase with a Rashba-like spin
texture is found. A phase diagram is presented and consequences are briefly
discussed
Energy-level quantization in YBa2Cu3O7-x phase-slip nanowires
Significant progress has been made in the development of superconducting
quantum circuits, however new quantum devices that have longer decoherence
times at higher temperatures are urgently required for quantum technologies.
Superconducting nanowires with quantum phase slips are promising candidates for
use in novel devices that operate on quantum principles. Here, we demonstrate
ultra-thin YBa2Cu3O7-x nanowires with phase-slip dynamics and study their
switching-current statistics at temperatures below 20 K. We apply theoretical
models that were developed for Josephson junctions and show that our results
provide strong evidence for energy-level quantization in the nanowires. The
crossover temperature to the quantum regime is 12-13 K, while the lifetime in
the excited state exceeds 20 ms at 5.4 K. Both values are at least one order of
magnitude higher than those in conventional Josephson junctions based on
low-temperature superconductors. We also show how the absorption of a single
photon changes the phase-slip and quantum state of a nanowire, which is
important for the development of single-photon detectors with high operating
temperature and superior temporal resolution. Our findings pave the way for a
new class of superconducting nanowire devices for quantum sensing and
computing
Cooper pair sizes in 11Li and in superfluid nuclei: a puzzle?
We point out a strong influence of the pairing force on the size of the two
neutron Cooper pair in Li, and to a lesser extent also in He. It
seems that these are quite unique situations, since Cooper pair sizes of stable
superfluid nuclei are very little influenced by the intensity of pairing, as
recently reported. We explore the difference between Li and heavier
superfulid nuclei, and discuss reasons for the exceptional situation in
Li.Comment: 9 pages. To be published in J. of Phys. G special issue on Open
Problems in Nuclear Structure (OPeNST
The nuclear scissors mode within two approaches (Wigner function moments versus RPA)
Two complementary methods to describe the collective motion, RPA and Wigner
function moments method, are compared on an example of a simple model -
harmonic oscillator with quadrupole-quadrupole residual interaction. It is
shown that they give identical formulae for eigenfrequencies and transition
probabilities of all collective excitations of the model including the scissors
mode, which here is the subject of our special attention. The exact relation
between the variables of the two methods and the respective dynamical equations
is established. The normalization factor of the "synthetic" scissors state and
its overlap with physical states are calculated analytically. The orthogonality
of the spurious state to all physical states is proved rigorously.Comment: 39 page
Moment of inertia of a trapped superfluid gas of Fermions
The moment of inertia Q of a trapped superfluid gas of atomic Fermions (6Li)
is calculated as a function of the temperature. At zero temperature the moment
of inertia takes on the irrotational flow value. Only for T very close to Tc
rigid rotation is attained. It is proposed that future measurements of the
rotational energy will unambiguously reveal whether the system is in a
superfluid state or not.Comment: 43 pages, 5 figures ; accepted in Phys. Rev.
Tunable diode laser in-situ CH₄ measurements aboard the CARIBIC passenger aircraft: instrument performance assessment
A laser spectrometer for automated monthly measurements of methane (CH 4) mixing ratios aboard the CARIBIC passenger aircraft is presented. The instrument is based on a commercial Fast Greenhouse Gas Analyser (FGGA, Los Gatos Res.), which was adapted to meet the requirements imposed by unattended airborne operation. It was characterised in the laboratory with respect to instrument stability, precision, cross sensitivity to H2O, and accuracy. For airborne operation, a calibration strategy is described that utilises CH4 measurements obtained from flask samples taken during the same flights. The precision of airborne measurements is 2 ppb for 10 s averages. The accuracy at aircraft cruising altitude is 3.85 ppb. During aircraft ascent and descent, where no flask samples were obtained, instrumental drifts can be less accurately determined and the uncertainty is estimated to be 12.4 ppb. A linear humidity bias correction was applied to the CH4 measurements, which was most important in the lower troposphere. On average, the correction bias was around 6.5 ppb at an altitude of 2 km, and negligible at cruising flight level. Observations from 103 long-distance flights are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere (UT/LMS), with occasional crossing of the tropics on flights to southern Africa. These accurate data mark the largest UT/LMS in-situ CH4 dataset worldwide. An example of a tracer-tracer correlation study with ozone is given, highlighting the possibility for accurate cross-tropopause transport analyses. © Author(s) 2014
Spin degrees of freedom and flattening of the spectra of single-particle excitations in strongly correlated Fermi systems
The impact of long-range spin-spin correlations on the structure of a flat
portion in single-particle spectra , which emerges beyond the point,
where the Landau state loses its stability, is studied. We supplement the
well-known Nozieres model of a Fermi system with limited scalar long-range
forces by a similar long-range spin-dependent term and calculate the spectra
versus its strength . It is found that Nozieres results hold as long as
. However, with changing its sign, the spontaneous magnetization is
shown to arise at any nonzero . The increase of the strength is
demonstrated to result in shrinkage of the domain in momentum space, occupied
by the flat portion of , and, eventually, in its vanishing.Comment: 7 pages, 15 figure
- …