1,234 research outputs found

    Boson-Fermion pairing in a Boson-Fermion environment

    Get PDF
    Propagation of a Boson-Fermion (B-F) pair in a B-F environment is considered. The possibility of formation of stable strongly correlated B-F pairs, embedded in the continuum, is pointed out. The new Fermi gas of correlated B-F pairs shows a strongly modified Fermi surface. The interaction between like particles is neglected in this exploratory study. Various physical situations where our new pairing mechanism could be of importance are invoked.Comment: 8 pages, 8 figers, to be published in Phys. Rev.

    Cooper pair sizes in 11Li and in superfluid nuclei: a puzzle?

    Full text link
    We point out a strong influence of the pairing force on the size of the two neutron Cooper pair in 11^{11}Li, and to a lesser extent also in 6^6He. It seems that these are quite unique situations, since Cooper pair sizes of stable superfluid nuclei are very little influenced by the intensity of pairing, as recently reported. We explore the difference between 11^{11}Li and heavier superfulid nuclei, and discuss reasons for the exceptional situation in 11^{11}Li.Comment: 9 pages. To be published in J. of Phys. G special issue on Open Problems in Nuclear Structure (OPeNST

    The nuclear scissors mode within two approaches (Wigner function moments versus RPA)

    Full text link
    Two complementary methods to describe the collective motion, RPA and Wigner function moments method, are compared on an example of a simple model - harmonic oscillator with quadrupole-quadrupole residual interaction. It is shown that they give identical formulae for eigenfrequencies and transition probabilities of all collective excitations of the model including the scissors mode, which here is the subject of our special attention. The exact relation between the variables of the two methods and the respective dynamical equations is established. The normalization factor of the "synthetic" scissors state and its overlap with physical states are calculated analytically. The orthogonality of the spurious state to all physical states is proved rigorously.Comment: 39 page

    Energy density functional on a microscopic basis

    Full text link
    In recent years impressive progress has been made in the development of highly accurate energy density functionals, which allow to treat medium-heavy nuclei. In this approach one tries to describe not only the ground state but also the first relevant excited states. In general, higher accuracy requires a larger set of parameters, which must be carefully chosen to avoid redundancy. Following this line of development, it is unavoidable that the connection of the functional with the bare nucleon-nucleon interaction becomes more and more elusive. In principle, the construction of a density functional from a density matrix expansion based on the effective nucleon-nucleon interaction is possible, and indeed the approach has been followed by few authors. However, to what extent a density functional based on such a microscopic approach can reach the accuracy of the fully phenomenological ones remains an open question. A related question is to establish which part of a functional can be actually derived by a microscopic approach and which part, on the contrary, must be left as purely phenomenological. In this paper we discuss the main problems that are encountered when the microscopic approach is followed. To this purpose we will use the method we have recently introduced to illustrate the different aspects of these problems. In particular we will discuss the possible connection of the density functional with the nuclear matter Equation of State and the distinct features of finite size effects proper of nuclei.Comment: 20 pages, 6 figures,Contribution to J. Phys G, Special Issue, Focus Section: Open Problems in Nuclear Structur

    Alpha-cluster Condensations in Nuclei and Experimental Approaches for their Studies

    Full text link
    The formation of alpha-clusters in nuclei close to the decay thresholds is discussed. These states can be considered to be boson-condensates, which are formed in a second order phase transition in a mixture of nucleons and alpha-particles. The de Broglie wavelength of the alpha-particles is larger than the nuclear diameter, therefore the coherent properties of the alpha-particles give particular effects for the study of such states. The states are above the thresholds thus the enhanced emission of multiple-alphas into the same direction is observed. The probability for the emission of multiple-alphas is not described by Hauser-Feshbach theory for compound nucleus decay.Comment: 21 pages, 12 figures

    Demonstration Advanced Avionics System (DAAS) function description

    Get PDF
    The Demonstration Advanced Avionics System, DAAS, is an integrated avionics system utilizing microprocessor technologies, data busing, and shared displays for demonstrating the potential of these technologies in improving the safety and utility of general aviation operations in the late 1980's and beyond. Major hardware elements of the DAAS include a functionally distributed microcomputer complex, an integrated data control center, an electronic horizontal situation indicator, and a radio adaptor unit. All processing and display resources are interconnected by an IEEE-488 bus in order to enhance the overall system effectiveness, reliability, modularity and maintainability. A detail description of the DAAS architecture, the DAAS hardware, and the DAAS functions is presented. The system is designed for installation and flight test in a NASA Cessna 402-B aircraft

    Moment of inertia of a trapped superfluid gas of Fermions

    Get PDF
    The moment of inertia Q of a trapped superfluid gas of atomic Fermions (6Li) is calculated as a function of the temperature. At zero temperature the moment of inertia takes on the irrotational flow value. Only for T very close to Tc rigid rotation is attained. It is proposed that future measurements of the rotational energy will unambiguously reveal whether the system is in a superfluid state or not.Comment: 43 pages, 5 figures ; accepted in Phys. Rev.

    Four-particle condensate in strongly coupled fermion systems

    Full text link
    Four-particle correlations in fermion systems at finite temperatures are investigated with special attention to the formation of a condensate. Instead of the instability of the normal state with respect to the onset of pairing described by the Gorkov equation, a new equation is obtained which describes the onset of quartetting. Within a model calculation for symmetric nuclear matter, we find that below a critical density, the four-particle condensation (alpha-like quartetting) is favored over deuteron condensation (triplet pairing). This pairing-quartetting competition is expected to be a general feature of interacting fermion systems, such as the excition-biexciton system in excited semiconductors. Possible experimental consequences are pointed out.Comment: LaTeX, 11 pages, 2 figures, uses psfig.sty (included), to be published in Phys. Rev. Lett., tentatively scheduled for 13 April 1998 (Volume 80, Number 15

    Heralded single photon absorption by a single atom

    Full text link
    The emission and absorption of single photons by single atomic particles is a fundamental limit of matter-light interaction, manifesting its quantum mechanical nature. At the same time, as a controlled process it is a key enabling tool for quantum technologies, such as quantum optical information technology [1, 2] and quantum metrology [3, 4, 5, 6]. Controlling both emission and absorption will allow implementing quantum networking scenarios [1, 7, 8, 9], where photonic communication of quantum information is interfaced with its local processing in atoms. In studies of single-photon emission, recent progress includes control of the shape, bandwidth, frequency, and polarization of single-photon sources [10, 11, 12, 13, 14, 15, 16, 17], and the demonstration of atom-photon entanglement [18, 19, 20]. Controlled absorption of a single photon by a single atom is much less investigated; proposals exist but only very preliminary steps have been taken experimentally such as detecting the attenuation and phase shift of a weak laser beam by a single atom [21, 22], and designing an optical system that covers a large fraction of the full solid angle [23, 24, 25]. Here we report the interaction of single heralded photons with a single trapped atom. We find strong correlations of the detection of a heralding photon with a change in the quantum state of the atom marking absorption of the quantum-correlated heralded photon. In coupling a single absorber with a quantum light source, our experiment demonstrates previously unexplored matter-light interaction, while opening up new avenues towards photon-atom entanglement conversion in quantum technology.Comment: 10 pages, 4 figure
    corecore