7 research outputs found
Statistical properties of thermodynamically predicted RNA secondary structures in viral genomes
By performing a comprehensive study on 1832 segments of 1212 complete genomes
of viruses, we show that in viral genomes the hairpin structures of
thermodynamically predicted RNA secondary structures are more abundant than
expected under a simple random null hypothesis. The detected hairpin structures
of RNA secondary structures are present both in coding and in noncoding regions
for the four groups of viruses categorized as dsDNA, dsRNA, ssDNA and ssRNA.
For all groups hairpin structures of RNA secondary structures are detected more
frequently than expected for a random null hypothesis in noncoding rather than
in coding regions. However, potential RNA secondary structures are also present
in coding regions of dsDNA group. In fact we detect evolutionary conserved RNA
secondary structures in conserved coding and noncoding regions of a large set
of complete genomes of dsDNA herpesviruses.Comment: 9 pages, 2 figure
Toward best practice in cancer mutation detection with whole-genome and whole-exome sequencing
Clinical applications of precision oncology require accurate tests that can distinguish true cancer-specific mutations from errors introduced at each step of next-generation sequencing (NGS). To date, no bulk sequencing study has addressed the effects of cross-site reproducibility, nor the biological, technical and computational factors that influence variant identification. Here we report a systematic interrogation of somatic mutations in paired tumorânormal cell lines to identify factors affecting detection reproducibility and accuracy at six different centers. Using whole-genome sequencing (WGS) and whole-exome sequencing (WES), we evaluated the reproducibility of different sample types with varying input amount and tumor purity, and multiple library construction protocols, followed by processing with nine bioinformatics pipelines. We found that read coverage and callers affected both WGS and WES reproducibility, but WES performance was influenced by insert fragment size, genomic copy content and the global imbalance score (GIV; Gâ>âT/Câ>âA). Finally, taking into account library preparation protocol, tumor content, read coverage and bioinformatics processes concomitantly, we recommend actionable practices to improve the reproducibility and accuracy of NGS experiments for cancer mutation detection