4 research outputs found

    Fine Scale Nest Site Selection of Greater Sage-Grouse In The Centennial Valley, Montana

    Get PDF
    The purpose of this study was to determine fine scale nest site selection of greater sage-grouse (Centrocercus urophasianus) in the Centennial Valley, MT. A total of ninety nests were found during 2014-2015 using radio-collared sage-grouse. Vegetation surveys were conducted at nests and random sites that measured the nest shrub and the cover available within 3m of the nest. Length of the branch over the nest (Lgth.LB), average axis width of the nest shrub (AvgAxis), lateral cover of the nest shrub (LCShrub), aerial cover of the nest shrub (ACShrub), and height of the lower branch over the nest (Ht.LB) were the habitat variables that received the most support. All habitat variables that were included in the top model were nest shrub morphological characteristics and cover provided by the nest shrub. Therefore, there is strong support that sage-grouse in the Centennial Valley are selecting nest sites based on the morphology of the nest shrub and the cover provided by that nest shrub. None of the habitat variables associated with herbaceous cover received much support for inclusion in our models. On average, residual cover (i.e. grass from previous year) provided concealment for only 4% of the nest bowl. The relative probability of a shrub being selected for a nest site is maximized when Lgth.LB >75cm long, AvgAxis >130cm wide, LCShrub >80%, and ACShrub > 70%. Managers should focus on conserving mountain big sagebrush (Artemisia tridentata ssp. vaseyana) and three-tip sagebrush (Artemisia tripartita) habitats because they were more likely to meet those shrub characteristics

    Niche shifts and energetic condition of songbirds in response to phenology of food-resource availability in a high-elevation sagebrush ecosystem

    Get PDF
    Seasonal fluctuations in food availability can affect diets of consumers, which in turn may influence the physiological state of individuals and shape intra- and inter-specific patterns of resource use. High-elevation ecosystems often exhibit a pronounced seasonal “pulse” in productivity, although few studies document how resource use and energetic condition by avian consumers change in relation to food-resource availability in these ecosystems. We tested the hypothesis that seasonal increases (pulses) in food resources in high-elevation sagebrush ecosystems result in 2 changes after the pulse, relative to the before-pulse period: (1) reduced diet breadth of, and overlap between, 2 sympatric sparrow species; and (2) enhanced energetic condition in both species. We tracked breeding-season diets using stable isotopes and energetic condition using plasma metabolites of Brewer\u27s Sparrows (Spizella breweri), Vesper Sparrows (Pooecetes gramineus), and their food resources during 2011, and of only Brewer\u27s Sparrows and their food resources during 2013. We quantify diet breadth and overlap between both species, along with coincident physiological consequences of temporal changes in resource use. After invertebrate biomass increased following periods of rainfall in 2011, dietary breadth decreased by 35% in Brewer\u27s Sparrows and by 48% in Vesper Sparrows, while dietary overlap decreased by 88%. Energetic condition of both species increased when dietary overlap was lower and diet breadth decreased, after the rapid rise of food-resource availability. However, energetic condition of Brewer\u27s Sparrows remained constant in 2013, a year with low precipitation and lack of a strong pulse in food resources, even though the species\u27 dietary breadth again decreased that year. Our results indicate that diet breadth and overlap in these sparrow species inhabiting sagebrush ecosystems generally varied as predicted in relation to intra- and interannual changes in food resources, and this difference in diet was associated with improved energetic condition of sparrows at least in one year
    corecore