273 research outputs found
Atomic Force Microscopy of DNA on Mica and Chemically Modified Mica
Atomic force microscopy (AFM) was used to image circular DNA adsorbed on freshly cleaved mica and mica chemically modified with Mg(II), Co(II), La(III), and Zr(IV). Images obtained on unmodified mica show coiling of DNA due to forces involved during the drying process. The coiling or super twisting appeared to be right handed and the extent of super twisting could be controlled by the drying conditions. Images of DNA observed on chemically modified surfaces show isolated open circular DNA that is free from super twisting, presumably due to strong binding of DNA on chemically modified surfaces
FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis
In flowering plants, the developing embryo consists of growing populations of cells whose fates are determined in a position-dependent manner to form the adult organism. Mutations in the FACKEL (FK) gene affect body organization of the Arabidopsis seedling. We report that FK is required for cell division and expansion and is involved in proper organization of the embryo. We isolated FK by positional cloning. Expression analysis in embryos revealed that FK mRNA becomes localized to meristematic zones. FK encodes a predicted integral membrane protein related to the vertebrate lamin B receptor and sterol reductases across species, including yeast sterol C-14 reductase ERG24. We provide functional evidence that FK encodes a sterol C-14 reductase by complementation of erg24. GC/MS analysis confirmed that fk mutations lead to accumulation of intermediates in the biosynthetic pathway preceding the C-14 reductase step. Although fk represents a sterol biosynthetic mutant, the phenotype was not rescued by feeding with brassinosteroids (BRs), the only plant sterol signaling molecules known so far. We propose that synthesis of sterol signals in addition to BRs is important in mediating regulated cell growth and organization during embryonic development. Our results indicate a novel role for sterols in the embryogenesis of plants
Dairy herd mastitis and reproduction: using simulation to aid interpretation of results from discrete time survival analysis
Probabilistic sensitivity analysis (PSA) is a simulation-based technique for evaluating the relative importance of different inputs to a complex process model. It is commonly employed in decision analysis and for evaluation of the potential impact of uncertainty in research findings on clinical practice, but has a wide variety of other possible applications. In this example, it was used to evaluate the association between herd-level udder health and reproductive performance in dairy herds.
Although several recent studies have found relatively large associations between mastitis and fertility at the level of individual inseminations or lactations, the current study demonstrated that herd-level intramammary infection status is highly unlikely to have a clinically significant impact on the overall reproductive performance of a dairy herd under typical conditions. For example, a large increase in incidence rate of clinical mastitis (from 92 to 131 cases per 100 cows per year) would be expected to increase a herd's modified FERTEX score (a cost-based measure of overall reproductive performance) by just £4.501 per cow per year. The herd's background level of submission rate (proportion of eligible cows served every 21 days) and pregnancy risk (proportion of inseminations leading to a pregnancy) correlated strongly with overall reproductive performance and explained a large proportion of the between-herd variation in performance.
PSA proved to be a highly useful technique to aid understanding of results from a complex statistical model, and has great potential for a wide variety of applications within the field of veterinary science
Perinatal Exposure to Bisphenol A Increases Adult Mammary Gland Progesterone Response and Cell Number
Bisphenol A [BPA, 2,2,-bis (hydroxyphenyl) propane] is one of the highest-volume chemicals produced worldwide. It is detected in body fluids of more than 90% of the human population. Originally synthesized as an estrogenic compound, it is currently utilized to manufacture food and beverage containers resulting in uptake with food and drinks. There is concern that exposure to low doses of BPA, defined as less than or equal to 5 mg/kg body weight /d, may have developmental effects on various hormone-responsive organs including the mammary gland. Here, we asked whether perinatal exposure to a range of low doses of BPA is sufficient to alter mammary gland hormone response later on in life, with a possible impact on breast cancer risk. To mimic human exposure, we added BPA to the drinking water of C57/Bl6 breeding pairs. Analysis of the mammary glands of their daughters at puberty showed that estrogen-dependent transcriptional events were perturbed and the number of terminal end buds, estrogen-induced proliferative structures, was altered in a dose-dependent fashion. Importantly, adult females showed an increase in mammary epithelial cell numbers comparable to that seen in females exposed to diethylbestrol, a compound exposure to which was previously linked to increased breast cancer risk. Molecularly, the mRNAs encoding Wnt-4 and receptor activator of nuclear factor ĸB ligand, two key mediators of hormone function implicated in control of mammary stem cell proliferation and carcinogenesis, showed increased induction by progesterone in the mammary tissue of exposed mice. Thus, perinatal exposure to environmentally relevant doses of BPA alters long-term hormone response that may increase the propensity to develop breast cancer
Lipidomic Analysis of Arabidopsis T-DNA Insertion Lines Leads to Identification and Characterization of C-Terminal Alterations in FATTY ACID DESATURASE 6
Article states that mass-spectrometry-based screening of lipid extracts of wounded and unwounded leaves from a collection of 364 Arabidopsis thaliana T-DNA insertion lines produced lipid profiles that were scored on the number and significance of their differences from the leaf lipid profiles of wild-type plants. The analysis identified Salk_109175C, which displayed alterations in leaf chloroplast glycerolipid composition, including a decreased ratio between two monogalactosyldiacylglycerol (MGDG) molecular species, MGDG(18:3/16:3) and MGDG(18:3/18:3)
Addition of meloxicam to the treatment of clinical mastitis improves subsequent reproductive performance
AbstractA blinded, negative controlled, randomized intervention study was undertaken to test the hypothesis that addition of meloxicam, a nonsteroidal anti-inflammatory drug, to antimicrobial treatment of mild to moderate clinical mastitis would improve fertility and reduce the risk of removal from the herd. Cows (n=509) from 61 herds in 8 regions (sites) in 6 European countries were enrolled. Following herd-owner diagnosis of mild to moderate clinical mastitis within the first 120d of lactation in a single gland, the rectal temperature, milk appearance, and California Mastitis Test score were assessed. Cows were randomly assigned within each site to be treated either with meloxicam or a placebo (control). All cows were additionally treated with 1 to 4 intramammary infusions of cephalexin and kanamycin at 24-h intervals. Prior to treatment and at 14 and 21d posttreatment, milk samples were collected for bacteriology and somatic cell count. Cows were bred by artificial insemination and pregnancy status was subsequently defined. General estimating equations were used to determine the effect of treatment (meloxicam versus control) on bacteriological cure, somatic cell count, the probability of being inseminated by 21d after the voluntary waiting period, the probability of conception to first artificial insemination, the number of artificial insemination/conception, the probability of pregnancy by 120 or 200d postcalving, and the risk of removal by 300d after treatment. Cox’s proportional hazards models were used to test the effect of treatment on the calving to first insemination and calving to conception intervals. Groups did not differ in terms of age, clot score, California Mastitis Test score, rectal temperature, number of antimicrobial treatments given or bacteria present at the time of enrollment, but cows treated with meloxicam had greater days in milk at enrollment. Cows treated with meloxicam had a higher bacteriological cure proportion than those treated with the placebo [0.66 (standard error=0.04) versus 0.50 (standard error=0.06), respectively], although the proportion of glands from which no bacteria were isolated posttreatment did not differ between groups. No difference was observed in the somatic cell count between groups pre- or posttreatment. The proportion of cows that underwent artificial insemination by 21d after the voluntary waiting period was unaffected by treatment. Treatment with meloxicam was associated with a higher proportion of cows conceiving to their first artificial insemination (0.31 versus 0.21), and a higher proportion of meloxicam-treated cows were pregnant by 120d after calving (0.40 versus 0.31). The number of artificial inseminations required to achieve conception was lower in the meloxicam compared with control cows (2.43 versus 2.92). No difference was observed between groups in the proportion of cows pregnant by 200d after calving or in the proportion of cows that were culled, died, or sold by 300d after calving (17% versus 21% for meloxicam versus control, respectively). It was concluded that use of meloxicam, in conjunction with antimicrobial therapy, for mild to moderate cases of clinical mastitis, resulted in a higher probability of bacteriological cure, an increased probability of conception to first artificial insemination, fewer artificial inseminations, and a greater proportion of cows pregnant by 120d in milk
A Comprehensive Classification and Evolutionary Analysis of Plant Homeobox Genes
The full complement of homeobox transcription factor sequences, including genes and pseudogenes, was determined from the analysis of 10 complete genomes from flowering plants, moss, Selaginella, unicellular green algae, and red algae. Our exhaustive genome-wide searches resulted in the discovery in each class of a greater number of homeobox genes than previously reported. All homeobox genes can be unambiguously classified by sequence evolutionary analysis into 14 distinct classes also characterized by conserved intron–exon structure and by unique codomain architectures. We identified many new genes belonging to previously defined classes (HD-ZIP I to IV, BEL, KNOX, PLINC, WOX). Other newly identified genes allowed us to characterize PHD, DDT, NDX, and LD genes as members of four new evolutionary classes and to define two additional classes, which we named SAWADEE and PINTOX. Our comprehensive analysis allowed us to identify several newly characterized conserved motifs, including novel zinc finger motifs in SAWADEE and DDT. Members of the BEL and KNOX classes were found in Chlorobionta (green plants) and in Rhodophyta. We found representatives of the DDT, WOX, and PINTOX classes only in green plants, including unicellular green algae, moss, and vascular plants. All 14 homeobox gene classes were represented in flowering plants, Selaginella, and moss, suggesting that they had already differentiated in the last common ancestor of moss and vascular plants
- …