269 research outputs found
Lower serum estradiol levels in assigned female at birth transgender people with initiation of testosterone therapy : results from the European Network for the Investigation of Gender Incongruence
Purpose: Concerns have been raised about undesired estrogenic effects in assigned female at birth (AFAB) transgender people on testosterone therapy. How serum estradiol levels change after initiation of testosterone therapy and if these levels should be monitored remain unclear. Methods: This prospective cohort study was part of the European Network for the Investigation of Gender Incongruence. Serum levels of sex steroids were assessed in 746 AFAB transgender people during a 3-year follow-up period, starting at the initiation of hormone treatment. Results: Estradiol levels decreased from median [P25-P75] 45.6 [24.0-102.2] pg/mL to 36.5 [25.0-46.2] pg/mL over 3 years (p < 0.001); a change was already noticeable during the first 3 months (mean -17.1 pg/mL, 95% confidence interval -23.8 to -10.6, p < 0.001). Serum estradiol levels were lower in people without endogenous estradiol production from ovarian source (contraceptive users or post hystero-oophorectomy) at baseline and after 3 months, compared with people with endogenous estradiol production. Using long-acting testosterone undecanoate injections resulted in a more prominent decrease in serum estradiol values over 12 months, compared with short-acting mixed testosterone esters (p < 0.001) or testosterone gel (p = 0.001). Changes in serum estradiol were positively correlated to changes in luteinizing hormone (rho = 0.107, p < 0.001) and negatively correlated to changes in follicle-stimulating hormone levels (rho = -0.167, p < 0.001) and body mass index (rho = -0.082, p < 0.001). Conclusion: Testosterone administration in AFAB transgender people resulted in decreasing serum estradiol levels. Our results suggest that testosterone therapy leads to central suppression of estradiol production, with partial restitution due to aromatization
The tethering of chromatin to the nuclear envelope supports nuclear mechanics
The nuclear lamina is thought to be the primary mechanical defence of the nucleus. However, the lamina is integrated within a network of lipids, proteins and chromatin; the interdependence of this network poses a challenge to defining the individual mechanical contributions of these components. Here, we isolate the role of chromatin in nuclear mechanics by using a system lacking lamins. Using novel imaging analyses, we observe that untethering chromatin from the inner nuclear membrane results in highly deformable nuclei in vivo, particularly in response to cytoskeletal forces. Using optical tweezers, we find that isolated nuclei lacking inner nuclear membrane tethers are less stiff than wild-type nuclei and exhibit increased chromatin flow, particularly in frequency ranges that recapitulate the kinetics of cytoskeletal dynamics. We suggest that modulating chromatin flow can define both transient and long-lived changes in nuclear shape that are biologically important and may be altered in disease
Controlled and Efficient Hybridization Achieved with DNA Probes Immobilized Solely through Preferential DNA-Substrate Interactions
Quantitatively correlating the response of DNA sensors to clinically and biologically significant sample abundances requires optimizing the reproducibility of hybridization between DNA targets and surface-bound DNA probes. 1,2 Although gold surfaces are not used in commercial fluorescence-based DNA arrays, gold offers many useful properties as a model substrate 3 and has been successfully used in systematic studies of the interactions governing DNA hybridization near interfaces. 4-8 The hybridization behavior of surface-immobilized DNA probes strongly depends on the probe conformation and on the lateral spacing between adjacent probes. Hybridization is generally enhanced for DNA probes that extend away from a surface, in part because steric hindrance is lower for such brushlike probes than for DNA directly adsorbed on gold. At surface densities e5 × 10 12 cm -2 , typical probe sequences (15-30 nucleotides) can hybridize with efficiencies >60%, 7-10 but at probe densities >1 × 10 13 cm -2 hybridization efficiency is often reduced because of increased electrostatic repulsion and steric constraints. 11-13 Surfaces with DNA probes in upright conformations can be prepared following a number of strategies, including adsorption via a thiol incorporated at one end (DNA-SH) or coupling DNA probes to bifunctional monolayers. [4][5][6][7][8][14][15][16][17][18] Preparing DNA probes * To whom correspondence should be addressed. E-mail: opdahl
Neuroprotective tissue adaptation induced by IL-12 attenuates CNS inflammation
IL-12 is a well-established driver of type 1 immune responses. Paradoxically, in several autoimmune conditions including neuroinflammation, IL-12 reduces pathology and exhibits regulatory properties. Yet, the mechanism and the involved cellular players behind this immune regulation remain elusive. To identify the IL-12-responsive elements which prevent immunopathology, we generated mouse models lacking a functional IL-12 receptor either in all cells or in specific populations within the immune or central nervous system (CNS) compartments, and induced experimental autoimmune encephalomyelitis (EAE), which models human Multiple Sclerosis (MS). This revealed that the CNS tissue-protective features of IL-12 are mediated by cells of the neuroectoderm, and not immune cells. Importantly, sections of brain from patients with MS show comparable patterns of expression, indicating parallel mechanisms in humans. By combining spectral flow cytometry, bulk and single-nucleus RNA sequencing, we uncovered an IL-12-induced neuroprotective adaption of the neuroectoderm critically involved in maintaining CNS tissue integrity during inflammation
IL-12 sensing in neurons induces neuroprotective CNS tissue adaptation and attenuates neuroinflammation in mice
Interleukin-12 (IL-12) is a potent driver of type 1 immunity. Paradoxically, in autoimmune conditions, including of the CNS, IL-12 reduces inflammation. The underlying mechanism behind these opposing properties and the involved cellular players remain elusive. Here we map IL-12 receptor (IL-12R) expression to NK and T cells as well as neurons and oligodendrocytes. Conditionally ablating the IL-12R across these cell types in adult mice and assessing their susceptibility to experimental autoimmune encephalomyelitis revealed that the neuroprotective role of IL-12 is mediated by neuroectoderm-derived cells, specifically neurons, and not immune cells. In human brain tissue from donors with multiple sclerosis, we observe an IL-12R distribution comparable to mice, suggesting similar mechanisms in mice and humans. Combining flow cytometry, bulk and single-nucleus RNA sequencing, we reveal an IL-12-induced neuroprotective tissue adaption preventing early neurodegeneration and sustaining trophic factor release during neuroinflammation, thereby maintaining CNS integrity in mice
Acute flaccid myelitis:cause, diagnosis, and management
Acute flaccid myelitis (AFM) is a disabling, polio-like illness mainly affecting children. Outbreaks of MM have occurred across multiple global regions since 2012, and the disease appears to be caused by non-polio enterovirus infection, posing a major public health challenge. The clinical presentation of flaccid and often profound muscle weakness (which can invoke respiratory failure and other critical complications) can mimic several other acute neurological illnesses. There is no single sensitive and specific test for MM, and the diagnosis relies on identification of several important clinical, neuroimaging, and cerebrospinal fluid characteristics. Following the acute phase of AFM, patients typically have substantial residual disability and unique long-term rehabilitation needs. In this Review we describe the epidemiology, clinical features, course, and outcomes of AFM to help to guide diagnosis, management, and rehabilitation. Future research directions include further studies evaluating host and pathogen factors, including investigations into genetic, viral, and immunological features of affected patients, host-virus interactions, and investigations of targeted therapeutic approaches to improve the long-term outcomes in this population
Multi-Ethnic Analysis of Lipid-Associated Loci: The NHLBI CARe Project
Background: Whereas it is well established that plasma lipid levels have substantial heritability within populations, it remains unclear how many of the genetic determinants reported in previous studies (largely performed in European American cohorts) are relevant in different ethnicities. Methodology/Principal Findings: We tested a set of 50,000 polymorphisms from 2,000 candidate genes and genetic loci from genome-wide association studies (GWAS) for association with low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) in 25,000 European Americans and 9,000 African Americans in the National Heart, Lung, and Blood Institute (NHLBI) Candidate Gene Association Resource (CARe). We replicated associations for a number of genes in one or both ethnicities and identified a novel lipid-associated variant in a locus harboring ICAM1. We compared the architecture of genetic loci associated with lipids in both African Americans and European Americans and found that the same genes were relevant across ethnic groups but the specific associated variants at each gene often differed. Conclusions/Significance: We identify or provide further evidence for a number of genetic determinants of plasma lipid levels through population association studies. In many loci the determinants appear to differ substantially between African Americans and European Americans
The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species
The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control
- …