56 research outputs found

    Liver Cancer-Derived Hepatitis C Virus Core Proteins Shift TGF-Beta Responses from Tumor Suppression to Epithelial-Mesenchymal Transition

    Get PDF
    International audienceBACKGROUND: Chronic hepatitis C virus (HCV) infection and associated liver cirrhosis represent a major risk factor for hepatocellular carcinoma (HCC) development. TGF-beta is an important driver of liver fibrogenesis and cancer; however, its actual impact in human cancer progression is still poorly known. The aim of this study was to investigate the role of HCC-derived HCV core natural variants on cancer progression through their impact on TGF-beta signaling. PRINCIPAL FINDINGS: We provide evidence that HCC-derived core protein expression in primary human or mouse hepatocyte alleviates TGF-beta responses in terms or growth inhibition or apoptosis. Instead, in these hepatocytes TGF-beta was still able to induce an epithelial to mesenchymal transition (EMT), a process that contributes to the promotion of cell invasion and metastasis. Moreover, we demonstrate that different thresholds of Smad3 activation dictate the TGF-beta responses in hepatic cells and that HCV core protein, by decreasing Smad3 activation, may switch TGF-beta growth inhibitory effects to tumor promoting responses. CONCLUSION/SIGNIFICANCE: Our data illustrate the capacity of hepatocytes to develop EMT and plasticity under TGF-beta, emphasize the role of HCV core protein in the dynamic of these effects and provide evidence for a paradigm whereby a viral protein implicated in oncogenesis is capable to shift TGF-beta responses from cytostatic effects to EMT development

    Gene expression analysis reveals a different transcriptomic landscape in female and male breast cancer

    Full text link
    International audienceMale breast cancer (MBC) is a poorly characterized disease because of its rarity. Clinical management is based on results obtained from randomized trials conducted in women notwithstanding data in the literature suggesting relevant gender-associated differences in terms of biological and clinical behavior. However, a genome-wide characterization of MBC on a transcriptional level is lacking. In this study, gene expression profiles of 37 estrogen receptor positive (ER+) MBC specimens were compared to that of 53 ER+ Female Breast Cancer (FBC) samples similar for clinical and patho-biological features. Almost 1000 genes were found differentially expressed (FDR < 1%) between female and male patients and biological interpretation highlighted a gender-associated modulation of key biological processes ranging from energy metabolism to regulation of translation and matrix remodeling as well as immune system recruitment. Moreover, an analysis of genes correlated to steroid receptors and ERBB2 suggested a prominent role for the androgen receptor in MBC with a minor relevance for progesterone receptor and ERBB2, although, similarly to FBC, a genomic amplification could be observed. Our findings support the idea that breast cancer is a quite different disease in male and female patients and the underlying gender-related biological differences are likely to have clinical implications connected with different susceptibility to treatment
    • …
    corecore