39 research outputs found
Multi-Site Benchmark Classification of Major Depressive Disorder Using Machine Learning on Cortical and Subcortical Measures
Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (N = 5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects
DenseNet and Support Vector Machine classifications of major depressive disorder using vertex-wise cortical features
Major depressive disorder (MDD) is a complex psychiatric disorder that
affects the lives of hundreds of millions of individuals around the globe. Even
today, researchers debate if morphological alterations in the brain are linked
to MDD, likely due to the heterogeneity of this disorder. The application of
deep learning tools to neuroimaging data, capable of capturing complex
non-linear patterns, has the potential to provide diagnostic and predictive
biomarkers for MDD. However, previous attempts to demarcate MDD patients and
healthy controls (HC) based on segmented cortical features via linear machine
learning approaches have reported low accuracies. In this study, we used
globally representative data from the ENIGMA-MDD working group containing an
extensive sample of people with MDD (N=2,772) and HC (N=4,240), which allows a
comprehensive analysis with generalizable results. Based on the hypothesis that
integration of vertex-wise cortical features can improve classification
performance, we evaluated the classification of a DenseNet and a Support Vector
Machine (SVM), with the expectation that the former would outperform the
latter. As we analyzed a multi-site sample, we additionally applied the ComBat
harmonization tool to remove potential nuisance effects of site. We found that
both classifiers exhibited close to chance performance (balanced accuracy
DenseNet: 51%; SVM: 53%), when estimated on unseen sites. Slightly higher
classification performance (balanced accuracy DenseNet: 58%; SVM: 55%) was
found when the cross-validation folds contained subjects from all sites,
indicating site effect. In conclusion, the integration of vertex-wise
morphometric features and the use of the non-linear classifier did not lead to
the differentiability between MDD and HC. Our results support the notion that
MDD classification on this combination of features and classifiers is
unfeasible
Brain imaging of the cortex in ADHD: a coordinated analysis of large-scale clinical and population-based samples
Objective:
Neuroimaging studies show structural alterations of various brain regions in children and adults with attention deficit hyperactivity disorder (ADHD), although nonreplications are frequent. The authors sought to identify cortical characteristics related to ADHD using large-scale studies.
Methods:
Cortical thickness and surface area (based on the Desikan–Killiany atlas) were compared between case subjects with ADHD (N=2,246) and control subjects (N=1,934) for children, adolescents, and adults separately in ENIGMA-ADHD, a consortium of 36 centers. To assess familial effects on cortical measures, case subjects, unaffected siblings, and control subjects in the NeuroIMAGE study (N=506) were compared. Associations of the attention scale from the Child Behavior Checklist with cortical measures were determined in a pediatric population sample (Generation-R, N=2,707).
Results:
In the ENIGMA-ADHD sample, lower surface area values were found in children with ADHD, mainly in frontal, cingulate, and temporal regions; the largest significant effect was for total surface area (Cohen’s d=−0.21). Fusiform gyrus and temporal pole cortical thickness was also lower in children with ADHD. Neither surface area nor thickness differences were found in the adolescent or adult groups. Familial effects were seen for surface area in several regions. In an overlapping set of regions, surface area, but not thickness, was associated with attention problems in the Generation-R sample.
Conclusions:
Subtle differences in cortical surface area are widespread in children but not adolescents and adults with ADHD, confirming involvement of the frontal cortex and highlighting regions deserving further attention. Notably, the alterations behave like endophenotypes in families and are linked to ADHD symptoms in the population, extending evidence that ADHD behaves as a continuous trait in the population. Future longitudinal studies should clarify individual lifespan trajectories that lead to nonsignificant findings in adolescent and adult groups despite the presence of an ADHD diagnosis
Frequency drift in MR spectroscopy at 3T
Purpose: Heating of gradient coils and passive shim components is a common cause of instability in the B-0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites.Method: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC).Results: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p < 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI.Discussion: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed.</p
Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures
Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (N = 5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects
Analysis of structural brain asymmetries in attention-deficit/hyperactivity disorder in 39 datasets
Objective
Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here, we performed the largest ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium.
Methods
We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modeling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries.
Results
There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t = 2.1, p = .04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t = 2.7, p = .01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen’s d from −0.18 to 0.18) and would not survive study-wide correction for multiple testing.
Conclusion
Prior studies of altered structural brain asymmetry in ADHD were likely underpowered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait
Subcortical brain volume, regional cortical thickness, and cortical surface area across disorders: findings from the ENIGMA ADHD, ASD, and OCD Working Groups
Objective Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD) are common neurodevelopmental disorders that frequently co-occur. We aimed to directly compare all three disorders. The ENIGMA consortium is ideally positioned to investigate structural brain alterations across these disorders.
Methods Structural T1-weighted whole-brain MRI of controls (n=5,827) and patients with ADHD (n=2,271), ASD (n=1,777), and OCD (n=2,323) from 151 cohorts worldwide were analyzed using standardized processing protocols. We examined subcortical volume, cortical thickness and surface area differences within a mega-analytical framework, pooling measures extracted from each cohort. Analyses were performed separately for children, adolescents, and adults using linear mixed-effects models adjusting for age, sex and site (and ICV for subcortical and surface area measures).
Results We found no shared alterations among all three disorders, while shared alterations between any two disorders did not survive multiple comparisons correction. Children with ADHD compared to those with OCD had smaller hippocampal volumes, possibly influenced by IQ. Children and adolescents with ADHD also had smaller ICV than controls and those with OCD or ASD. Adults with ASD showed thicker frontal cortices compared to adult controls and other clinical groups. No OCD-specific alterations across different age-groups and surface area alterations among all disorders in childhood and adulthood were observed.
Conclusion Our findings suggest robust but subtle alterations across different age-groups among ADHD, ASD, and OCD. ADHD-specific ICV and hippocampal alterations in children and adolescents, and ASD-specific cortical thickness alterations in the frontal cortex in adults support previous work emphasizing neurodevelopmental alterations in these disorders