323 research outputs found
Scaling of loop-erased walks in 2 to 4 dimensions
We simulate loop-erased random walks on simple (hyper-)cubic lattices of
dimensions 2,3, and 4. These simulations were mainly motivated to test recent
two loop renormalization group predictions for logarithmic corrections in
, simulations in lower dimensions were done for completeness and in order
to test the algorithm. In , we verify with high precision the prediction
, where the number of steps after erasure scales with the number
of steps before erasure as . In we again find a power law,
but with an exponent different from the one found in the most precise previous
simulations: . Finally, we see clear deviations from the
naive scaling in . While they agree only qualitatively with the
leading logarithmic corrections predicted by several authors, their agreement
with the two-loop prediction is nearly perfect.Comment: 3 pages, including 3 figure
Intrinsic Instability of Aberration-Corrected Electron Microscopes
163901Quantum Matter and Optic
The Length of an SLE - Monte Carlo Studies
The scaling limits of a variety of critical two-dimensional lattice models
are equal to the Schramm-Loewner evolution (SLE) for a suitable value of the
parameter kappa. These lattice models have a natural parametrization of their
random curves given by the length of the curve. This parametrization (with
suitable scaling) should provide a natural parametrization for the curves in
the scaling limit. We conjecture that this parametrization is also given by a
type of fractal variation along the curve, and present Monte Carlo simulations
to support this conjecture. Then we show by simulations that if this fractal
variation is used to parametrize the SLE, then the parametrized curves have the
same distribution as the curves in the scaling limit of the lattice models with
their natural parametrization.Comment: 18 pages, 10 figures. Version 2 replaced the use of "nu" for the
"growth exponent" by 1/d_H, where d_H is the Hausdorff dimension. Various
minor errors were also correcte
Ultra-Transparent Antarctic Ice as a Supernova Detector
We have simulated the response of a high energy neutrino telescope in deep
Antarctic ice to the stream of low energy neutrinos produced by a supernova.
The passage of a large flux of MeV-energy neutrinos during a period of seconds
will be detected as an excess of single counting rates in all individual
optical modules. We update here a previous estimate of the performance of such
an instrument taking into account the recent discovery of absorption lengths of
several hundred meters for near-UV photons in natural deep ice. The existing
AMANDA detector can, even by the most conservative estimates, act as a galactic
supernova watch.Comment: 9 pages, Revtex file, no figures. Postscript file also available from
http://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-888.ps.Z or from
ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-888.ps.
LERW as an example of off-critical SLEs
Two dimensional loop erased random walk (LERW) is a random curve, whose
continuum limit is known to be a Schramm-Loewner evolution (SLE) with parameter
kappa=2. In this article we study ``off-critical loop erased random walks'',
loop erasures of random walks penalized by their number of steps. On one hand
we are able to identify counterparts for some LERW observables in terms of
symplectic fermions (c=-2), thus making further steps towards a field theoretic
description of LERWs. On the other hand, we show that it is possible to
understand the Loewner driving function of the continuum limit of off-critical
LERWs, thus providing an example of application of SLE-like techniques to
models near their critical point. Such a description is bound to be quite
complicated because outside the critical point one has a finite correlation
length and therefore no conformal invariance. However, the example here shows
the question need not be intractable. We will present the results with emphasis
on general features that can be expected to be true in other off-critical
models.Comment: 45 pages, 2 figure
Deuteron Electroweak Disintegration
We study the deuteron electrodisintegration with inclusion of the neutral
currents focusing on the helicity asymmetry of the exclusive cross section in
coplanar geometry. We stress that a measurement of this asymmetry in the quasi
elastic region is of interest for an experimental determination of the weak
form factors of the nucleon, allowing one to obtain the parity violating
electron neutron asymmetry. Numerically, we consider the reaction at low
momentum transfer and discuss the sensitivity of the helicity asymmetry to the
strangeness radius and magnetic moment. The problems coming from the finite
angular acceptance of the spectrometers are also considered.Comment: 30 pages, Latex, 7 eps figures, submitted to Phys.Rev.C e-mail:
[email protected] , [email protected]
Coulomb Effects on Electromagnetic Pair Production in Ultrarelativistic Heavy-Ion Collisions
We discuss the implications of the eikonal amplitude on the pair production
probability in ultrarelativistic heavy-ion transits. In this context the
Weizs\"acker-Williams method is shown to be exact in the ultrarelativistic
limit, irrespective of the produced particles' mass. A new equivalent
single-photon distribution is derived which correctly accounts for the Coulomb
distortions. As an immediate application, consequences for unitarity violation
in photo-dissociation processes in peripheral heavy-ion encounters are
discussed.Comment: 13 pages, 4 .eps figure
Magnetogenesis and the dynamics of internal dimensions
The dynamical evolution of internal space-like dimensions breaks the
invariance of the Maxwell's equations under Weyl rescaling of the (conformally
flat) four-dimensional metric. Depending upon the number and upon the dynamics
of internal dimensions large scale magnetic fields can be created. The
requirements coming from magnetogenesis together with the other cosmological
constraints are examined under the assumption that the internal dimensions
either grow or shrink (in conformal time) prior to a radiation dominated epoch.
If the internal dimensions are growing the magnitude of the generated magnetic
fields can seed the galactic dynamo mechanism.Comment: 27 in RevTex style, four figure
Space-time evolution and HBT analysis of relativistic heavy ion collisions in a chiral SU(3) x SU(3) model
The space-time dynamics and pion-HBT radii in central heavy ion-collisions at
CERN-SPS and BNL-RHIC are investigated within a hydrodynamic simulation. The
dependence of the dynamics and the HBT-parameters on the EoS is studied with
different parametrisations of a chiral SU(3) sigma-omega model. The
selfconsistent collective expansion includes the effects of effective hadron
masses, generated by the nonstrange and strange scalar condensates. Different
chiral EoS show different types of phase transitions and even a crossover. The
influence of the order of the phase transition and of the difference in the
latent heat on the space-time dynamics and pion-HBT radii is studied. A small
latent heat, i.e. a weak first-order chiral phase transition, or even a smooth
crossover leads to distinctly different HBT predictions than a strong first
order phase transition. A quantitative description of the data, both at SPS
energies as well as at RHIC energies, appears difficult to achieve within the
ideal hydrodynamical approach using the SU(3) chiral EoS. A strong first-order
quasi-adiabatic chiral phase transition seems to be disfavored by the pion-HBT
data from CERN-SPS and BNL-RHIC
- …