12 research outputs found

    A model comparison of flow and lateral sediment trapping in estuaries

    Get PDF
    Two different models for the distribution of flow and sediment over the cross-section of a tidally dominated channel are compared. The first is a state-of-the-art numerical model that solves the three-dimensional shallow water equations with prognostic density field. The second is an idealized model which includes residual and semi-diurnal tidalmotions and uses a diagnostic residual density gradient as baroclinic forcing. For bothmodels, an off-line sediment module is used to compute the lateral mean sediment distribution. For fairly high values of vertical diffusivity (~ 0.01 m2 s-1), a good qualitative agreement is found for residual flow patterns. The agreement of the amplitude of the semi-diurnal velocity components is satisfactory as well, although the phase distributions show deviations. The lateral mean sediment distributions are rather similar, and stem from a balance that is predominantly governed by mean concentration and residual currents. The flow patterns only differ qualitatively for either very low or very high tidal velocities. The sediment distributions only deviate for low tidal flow regimes

    Can the Scheldt River Estuary become hyperturbid?: A model analysis of suspended sediment concentrations and transport in response to channel deepening

    No full text
    We investigate the hypothesis by Winterwerp and Wang (Ocean Dyn 63:1279–1292, 2013) that channel deepening in the Scheldt River Estuary could lead to a large increase in suspended sediment concentrations, with subsequent severe consequences to primary production and navigation. To this end, we use an idealised model to investigate the long-term development of the sediment concentration under the uncertainty of future changes in model parameter values and channel deepening. The water motion is calibrated to recent conditions after which the sediment concentration is validated against long-term observations and is subsequently tested for a wide range of parameter settings and deepening scenarios. We also investigate the effect of anthropogenic dumping of dredged sediments in the estuary on the sediment concentration. Deepening the channel, but keeping all other model parameters the same, we find lower long-term average sediment concentrations in most of the estuary. Thereby, our results suggest that deepening in the Scheldt alone cannot lead to high sediment concentrations, and we suggest to reject the investigated hypothesis. Further study of uncertain model parameters reveals that an increase of the erosion parameter by an order of magnitude allows for the development of high concentrations of several tens of grams per liter near the bed in narrow turbidity zones. It is unknown whether such an increase of the erosion parameter can happen in the future, which stresses the importance of further research into the factors that can lead to a change of this parameter.</p

    Effect of bottom stress formulation on modelled flow and turbidity maxima in cross-sections of tide-dominated estuaries

    No full text
    A three-dimensional numerical model with a prognostic salinity field is used to investigate the effect of a partial slip bottom boundary condition on lateral flow and sediment distribution in a transect of a tidally dominated channel. The transect has a symmetrical Gaussian cross-channel bottom profile. For a deep, well-mixed, tidally dominated channel, partial slip decreases the relative importance of Coriolis deflection on the generation of cross-channel flow patterns. This has profound implications for the lateral distribution of residual salinity that drives the cross-channel residual circulation pattern. Transverse sediment transport, however, is always found to be governed by a balance between advection of residual sediment concentration by residual lateral flow on the one hand and cross-channel diffusion on the other hand. Hence, the changes in the cross-channel distribution of residual salinity modify the lateral sediment distribution. For no slip, a single turbidity maximum occurs. In contrast, partial slip gives a gradual transition to a symmetrical density distribution with a turbidity maximum near each bank. For a more shallow, partially mixed tidal channel that represents the James River, a single turbidity maximum at the left bank is found irrespective of the near-bed slip condition. In this case, semi-diurnal contributions to sediment distribution and lateral flow play an important role in cross-channel sediment transport. As vertical viscosity and diffusivity are increased, a second maximum at the right bank again exists for partial slip

    The iFlow modelling framework v2.4: A modular idealized process-based model for flow and transport in estuaries

    No full text
    <p>The iFlow modelling framework is a width-averaged model for the systematic analysis of the water motion and sediment transport processes in estuaries and tidal rivers. The distinctive solution method, a mathematical perturbation method, used in the model allows for identification of the effect of individual physical processes on the water motion and sediment transport and study of the sensitivity of these processes to model parameters. This distinction between processes provides a unique tool for interpreting and explaining hydrodynamic interactions and sediment trapping. iFlow also includes a large number of options to configure the model geometry and multiple choices of turbulence and salinity models. Additionally, the model contains auxiliary components, including one that facilitates easy and fast sensitivity studies. iFlow has a modular structure, which makes it easy to include, exclude or change individual model components, called modules. Depending on the required functionality for the application at hand, modules can be selected to construct anything from very simple quasi-linear models to rather complex models involving multiple non-linear interactions. This way, the model complexity can be adjusted to the application. Once the modules containing the required functionality are selected, the underlying model structure automatically ensures modules are called in the correct order. The model inserts iteration loops over groups of modules that are mutually dependent. iFlow also ensures a smooth coupling of modules using analytical and numerical solution methods. This way the model combines the speed and accuracy of analytical solutions with the versatility of numerical solution methods. In this paper we present the modular structure, solution method and two examples of the use of iFlow. In the examples we present two case studies, of the Yangtze and Scheldt rivers, demonstrating how iFlow facilitates the analysis of model results, the understanding of the underlying physics and the testing of parameter sensitivity. A comparison of the model results to measurements shows a good qualitative agreement. iFlow is written in Python and is available as open source code under the LGPL license.</p

    Transverse structure of tidal and residual flow and sediment concentration in estuaries: sensitivity to tidal forcing and water depth

    No full text
    An analytical and a numerical model are used to understand the response of velocity and sediment distributions over Gaussian-shaped estuarine crosssections to changes in tidal forcing and water depth. The estuaries considered here are characterized by strong mixing and a relatively weak along-channel density gradient. It is also examined under what conditions the fast, two-dimensional analytical flow model yields results that agree with those obtained with the more complex three-dimensional numerical model. The analytical model reproduces and explains the main velocity and sediment characteristics in large parts of the parameter space considered (average tidal velocity amplitude, 0.1–1 m s-1 and maximum water depth, 10–60 m). Its skills are lower for along-channel residual flows if nonlinearities are moderate to high (strong tides in deep estuaries) and for transverse flows and residual sediment concentrations if the Ekman number is small (weak tides in deep estuaries). An important new aspect of the analytical model is the incorporation of tidal variations in the across-channel density gradient, causing a double circulation pattern in the transverse flow during slack tides. The gradient also leads to a new tidally rectified residual flow component via net advection of along-channel tidal momentum by the density-induced transverse tidal flow. The component features landward currents in the channel and seaward currents over the slopes and is particularly effective in deeper water. It acts jointly with components induced by horizontal density differences, Coriolisinduced tidal rectification and Stokes discharge, resulting in different along-channel residual flow regimes. The residual across-channel density gradient is crucial for the residual transverse circulation and for the residual sediment concentration. The clockwise densityinduced circulation traps sediment in the fresher water over the left slope (looking up-estuary in the northern hemisphere). Model results are largely consistent with available field data of well-mixed estuaries

    Can the Scheldt River Estuary become hyperturbid?: A model analysis of suspended sediment concentrations and transport in response to channel deepening

    No full text
    We investigate the hypothesis by Winterwerp and Wang (Ocean Dyn 63:1279–1292, 2013) that channel deepening in the Scheldt River Estuary could lead to a large increase in suspended sediment concentrations, with subsequent severe consequences to primary production and navigation. To this end, we use an idealised model to investigate the long-term development of the sediment concentration under the uncertainty of future changes in model parameter values and channel deepening. The water motion is calibrated to recent conditions after which the sediment concentration is validated against long-term observations and is subsequently tested for a wide range of parameter settings and deepening scenarios. We also investigate the effect of anthropogenic dumping of dredged sediments in the estuary on the sediment concentration. Deepening the channel, but keeping all other model parameters the same, we find lower long-term average sediment concentrations in most of the estuary. Thereby, our results suggest that deepening in the Scheldt alone cannot lead to high sediment concentrations, and we suggest to reject the investigated hypothesis. Further study of uncertain model parameters reveals that an increase of the erosion parameter by an order of magnitude allows for the development of high concentrations of several tens of grams per liter near the bed in narrow turbidity zones. It is unknown whether such an increase of the erosion parameter can happen in the future, which stresses the importance of further research into the factors that can lead to a change of this parameter.Mathematical Physic

    Transverse structure of tidal flow, residual flow and sediment concentration in estuaries: sensitivity to tidal forcing and water depth

    No full text
    An analytical and a numerical model are used to understand the response of velocity and sediment distributions over Gaussian-shaped estuarine cross-sections to changes in tidal forcing and water depth. The estuaries considered here are characterized by strong mixing and a relatively weak along-channel density gradient. It is also examined under what conditions the fast, two-dimensional analytical flow model yields results that agree with those obtained with the more complex three-dimensional numerical model. The analytical model reproduces and explains the main velocity and sediment characteristics in large parts of the parameter space considered (average tidal velocity amplitude, 0.1-1 m s - 1 and maximum water depth, 10-60 m). Its skills are lower for along-channel residual flows if nonlinearities are moderate to high (strong tides in deep estuaries) and for transverse flows and residual sediment concentrations if the Ekman number is small (weak tides in deep estuaries). An important new aspect of the analytical model is the incorporation of tidal variations in the across-channel density gradient, causing a double circulation pattern in the transverse flow during slack tides. The gradient also leads to a new tidally rectified residual flow component via net advection of along-channel tidal momentum by the density-induced transverse tidal flow. The component features landward currents in the channel and seaward currents over the slopes and is particularly effective in deeper water. It acts jointly with components induced by horizontal density differences, Coriolis-induced tidal rectification and Stokes discharge, resulting in different along-channel residual flow regimes. The residual across-channel density gradient is crucial for the residual transverse circulation and for the residual sediment concentration. The clockwise density-induced circulation traps sediment in the fresher water over the left slope (looking up-estuary in the northern hemisphere). Model results are largely consistent with available field data of well-mixed estuaries

    A Regime Shift From Low to High Sediment Concentrations in a Tide-Dominated Estuary

    No full text
    Many estuaries are strongly deepened to improve navigation, with sometimes large and poorly understood consequences to suspended sediment dynamics. To improve understanding of such large changes, we study the Ems River Estuary, where a regime shift from low to high sediment concentrations was observed after deepening. The aim of this study is to improve understanding of the development of the sediment concentration regime over time and estimate the associated time scale. Using the idealized width-averaged iFlow model, we identify the coexistence of two distinct stable equilibrium regimes representing low and high sediment concentrations, qualitatively matching the regimes observed in the Ems. Depending on the river discharge, a critical depth profile is identified at which the regime shifts. By combining the model results and long-term observations of the tidal range, first indications of the regime shift are observed around 1989, taking approximately 6–7 years to develop.Mathematical Physic

    Time Evolution of Estuarine Turbidity Maxima in Well-Mixed, Tidally Dominated Estuaries: The Role of Availability- and Erosion-Limited Conditions

    No full text
    Using an idealized width-averaged process-based model, the role of a mud pool on the bed and time-varying river discharge on the trapping of fine sediment is systematically investigated. For this purpose, a dynamically and physically motivated description of erodibility is presented, which relates the amount of sediment on the bed to the suspended sediment concentration (SSC). We can distinguish between two states: in the availability-limited state, the SSC is limited by the amount of erodible sediment at the bed. Over time, under constant forcing conditions, the estuary evolves to morphodynamic equilibrium. In the erosion-limited state, there is an abundant amount of sediment at the bed so that sediment pickup occurs at the maximum possible rate. The SSC is then limited by the local hydrodynamic conditions. In this state, the estuary keeps importing sediment, forming an erodible bottom pool that grows in time. These two states can be used to explain the response of an estuary to changing river discharge. Under availability-limited conditions, periods of high river discharge push estuarine turbidity maxima (ETMs) downstream, while drier periods allow ETMs to move upstream. However, when the estuary is in an erosion-limited state during low river discharge, a bottom pool is formed. When the discharge then increases, it takes time to deplete this pool, so that an ETM located over a bottom pool moves with a significant time lag relative to changes in the river discharge. Good qualitative agreement is found between model results and observations in the Scheldt Estuary of surface SSC using a representative year of discharge conditions.Mathematical Physic

    Modeling the Transition to High Sediment Concentrations as a Response to Channel Deepening in the Ems River Estuary

    No full text
    Many estuaries are strongly modified by human interventions, including substantive channel deepening. In the Ems River Estuary (Germany and Netherlands), channel deepening between the 1960s and early 2000s coincided with an increase in the maximum near-bed suspended sediment concentration from moderate (∼1 kg/m 3 ) to high (&gt;10 kg/m 3 ). In this study the observed transition in the suspended sediment concentration in the Ems is qualitatively reproduced by using an idealized width-averaged iFlow model. The model is used to reproduce observations from 1965 and 2005 by only changing the channel depth between the years. Model results show an increase in sediment concentrations from approximately 1–2 kg/m 3 to 20–30 kg/m 3 near the bed between 1965 and 2005 if the river discharge is below 70 m 3 /s, which holds approximately 60% of the time. Thereby, this study for the first time provides strong evidence for earlier published hypotheses that channel deepening was the main driver of the increased sediment concentrations in the Ems. The results are explained using two aspects: sediment transport (longitudinal processes) and local resuspension (vertical processes). The magnitude of the sediment import increased, because a combination of channel deepening and sediment-induced damping of turbulence increased the M 2 –M 4 tidal asymmetry. This effect is particularly strong, because the M 4 tide evolved to a state close to resonance. All imported sediment is kept in suspension when it is assumed that resuspension is sufficiently efficient, which depends on the value of the erosion parameter used and inclusion of hindered settling in the model. Mathematical Physic
    corecore