2 research outputs found

    Cost-effectiveness of stereotactic body radiation therapy versus video assisted thoracic surgery in medically operable stage I non-small cell lung cancer: A modeling study

    Get PDF
    Objectives: Stage I non-small cell lung cancer (NSCLC) can be treated with either Stereotactic Body Radiotherapy (SBRT) or Video Assisted Thoracic Surgery (VATS) resection. To support decision making, not only the impact on survival needs to be taken into account, but also on quality of life, costs and cost-effectiveness. Therefore, we performed a cost-effectiveness analysis comparing SBRT to VATS resection with respect to quality adjusted life years (QALY) lived and costs in operable stage I NSCLC. Materials and methods: Patient level and aggregate data from eight Dutch databases were used to estimate costs, health utilities, recurrence free and overall survival. Propensity score matching was used to minimize selection bias in these studies. A microsimulation model predicting lifetime outcomes after treatment in stage I NSCLC patients was used for the cost-effectiveness analysis. Model outcomes for the two treatments were overall survival, QALYs, and total costs. We used a Dutch health care perspective with 1.5 % discounting for health effects, and 4 % discounting for costs, using 2018 cost data. The impact of model parameter uncertainty was assessed with deterministic and probabilistic sensitivity analyses. Results: Patients receiving either VATS resection or SBRT were estimated to live 5.81 and 5.86 discounted QALYs, respectively. Average discounted lifetime costs in the VATS group were €29,269 versus €21,175 for SBRT. Difference in 90-day excess mortality between SBRT and VATS resection was the main driver for the difference in QALYs. SBRT was dominant in at least 74 % of the probabilistic simulations. Conclusion: Using a microsimulation model to combine available evidence on survival, costs, and health utilities in a cost-effectiveness analysis for stage I NSCLC led to the conclusion that SBRT dominates VATS resection in the majority of simulations

    Efficacy of Ibandronate Loading Dose on Rapid Pain Relief in Patients With Non-Small Cell Lung Cancer and Cancer Induced Bone Pain: The NVALT-9 Trial

    Get PDF
    Introduction: Approximately 80% of non-small cell lung cancer (NSCLC) patients with bone metastases have cancer induced bone pain (CIBP). Methods: The NVALT-9 was an open-label, single arm, phase II, multicenter study. Main inclusion criterion: bone metastasized NSCLC patients with uncontrolled CIBP [brief pain inventory [BPI] ≥ 5 over last 7 days]. Patients were treated with six milligram ibandronate intravenously (day 1–3) once a day. Main exclusion criteria: active secondary malignancy, systemic anti-tumor treatment and radiotherapy ≤4 weeks before study start, previous bisphosphonate treatment. Statistics: Simon's Optimal two-stage design with a 90% power to declare the treatment active if the pain response rate is ≥ 80% and 95% confidence to declare the treatment inactive if the pain response rate is ≤ 60%. If pain response is observed in ≤ 12 of the first 19 patients further enrollment will be stopped. Primary endpoint: bone pain response, defined as 25% decrease in worst pain score (PSc) over a 3-day period (day 5–7) compared to baseline PSc with maximum of 25% increase in mean analgesic consumption during the same period. Secondary endpoints: BPI score, quality of life, toxicity and World Health Organization Performance Score. Results: Of the 19 enrolled patients in the first stage, 18 were evaluable for response. All completed ibandronate treatment according to protocol. In 4 (22.2%), a bone pain response was observed. According to the stopping rule, further enrollment was halted. Discussion: Ibandronate loading doses lead to insufficient pain relief in NSCLC patients with CIBP
    corecore