22 research outputs found
Recommended from our members
High-power beam injectors for 100 KW free-electron lasers
A key technology issue on the path to high-power FEL operation is the demonstration of reliable, high-brightness, high-power injector operation. We describe two ongoing programs to produce 100 mA injectors as drivers for 100 kW free-electron lasers. In one approach, in collaboration with the Thomas Jefferson National Accelerator Facility, we are fabricating a 750 MHz superconducting RF cryomodule that will be integrated with a room-temperature DC photocathode gun and tested at the Laboratory. In the other approach, in collaboration with Los Alamos National Laboratory, a high-current 700 MHz, normal-conducting, RF photoinjector is being designed and will undergo thermal management testing at the Laboratory. We describe the design, the projected performance and the status of both injectors
Recommended from our members
Photoinjector RF cavity design for high power CW FEL
The project is under way to develop a key enabling technology for high-power CW FEL: an RF photoinjector capable of producing continuous average current greater than 100 mA. The specific aim is a 700 MHz pi-mode, normal-conducting RF photoinjector, 3 nC of bunch charge, 100 mA of current (at 33.3-MHz bunch repetition rate) and emittance less than 10 mm-mrad. This level of performance will enable robust 100-kW-class FEL operation with electron beam energy 400 MeV, thereby reducing the size and cost of the FEL. This design is scalable to the MW power level by increasing the electron bunch repetition rate from 33.3 MHz to a higher value. The major challenges are emittance control and high heat flux within the CW 700-MHz RF cavities. Results of RF cavity design and cooling schemes are presented, including both high-velocity water and liquid nitrogen cooling options
Recommended from our members
Q disease on 350-MHZ superconducting spoke cavities
Q disease, i.e., an increase of RF surface resistance due to hydride precipitation, has been investigated with 350-MHz spoke cavities. This phenomenon was studied extensively in early 1990s with cavities at frequencies >1 GHz. This is possibly due to the fact that the lower-frequency cavities were believed to show insignificant effect. However, early 500-MHz KEK elliptical cavities and JAERI 130-MHz quarter wave resonators have shown significant Q degradation, suggesting that this disease can be a serious problem with lower-frequency cavities as well. Since there were no quantitative data with 350-MHz cavities, we decided to measure our two spoke cavities. Our spoke cavities were made of RRR{approx}250 niobium and were chemically polished {approx}150 microns. A few series of systematic tests have shown that our spoke cavities do not show any Q{sub 0} degradation up to {approx}24 hours of holding the cavity at 100 K. However it starts showing degradation if it is held for a longer time and the additional loss due to the Q disease increases linearly. It was also found that our spoke cavity recovers from Q disease if it is warmed up to 150 K or higher for 12 hours
Recommended from our members
RF surface resistance of copper-on-beryllium at cryogenic temperatures measured by a 22-GHZ demountable cavity
A 22-GHz demountable cavity on the cold head of a compact refrigerator system was used to measure the RF performance of several coppt:r-plated Beryllium samples. The cavity inner surfce was treated by chemical polishing and heat treatment., as well as an OFE copper coupon to provide a baseline for comparison. The measured surhce resistance was reasonable and repeatable during either cooling or warming. Materials tested included four grades of Beryllium, OFE copper, alumina-dispersion strengthened copper (Glidcop), and Cu-plated versions of all of the above. Two coupons, Cuplated on Beryllium 0-30 and 1-70, offered comparable surface resistance to pure OFE copper or Cu-plated Glidcop. The RF surface resistance of Cu-on-Beryllium samples at cryogenic temperatures is reported together with that of other reference materials
Recommended from our members
Fabrication of the MEBT chopper system for the spallation neutron source
Los Alamos completed design, fabrication, procurement, and initial testing (without beam) of the SNS medium-energy beam-transport (MEBT) chopper, including the meander-line traveling-wave structure and the electrical-pulser system. This report reviews the design parameters and discusscs the fabrication process for the chopper structures, including measurements of the impedance and rise time. (The MEBT vacuum system and chopper-target beam stop were developed at and reported by LBNL.) We discuss the spccifications for the pulse generator and its fabrication and testing at Directed Energy, Inc. of Boulder, CO. Experimental tests of the chopper system are currently being performed at the SNS site at ORNL and will be reported separately
Recommended from our members
ADPF spoke cavity cryomodule concept
The Accelerator Driven Test Facility (ADTF) is being developed as a reactor concepts test bed for transmutation of nuclear waste. A 13.3 mA continuous-wave (CW) proton beam will be accelerated to 600 MeV and impinged on a spallation target. The subsequent neutron shower is used to create a nuclear reaction within a subcritical assembly of waste material that reduces the waste half-life from the order of 10{sup 5} years to 10{sup 2} years. Additionally, significant energy is produced that can be used to generate electrical power. The ADTF proton accelerator consists of room-temperature (RT) structures that accelerate the beam to 6.7-MeV and superconducting (SC) elements that boost the beam's energy to 600-MeV. Traditional SC elliptical cavities experience structural difficulties at low energies due to their geometry. Therefore, stiff-structured SC spoke cavities have been adopted for the energy range between 6.7 and 109 MeV. Elliptical cavities are used at the higher energies. This paper describes a multi-spoke-cavity cryomodule concept for ADTF
Recommended from our members
Q[sub 0] Degradation of LANL 700-MHZ [beta]=0.64 Elliptical Cavities and ANL 340 MHZ Spoke Cavities
The quality factor (Q{sub 0}) of most of the six LANL {beta} = 0.64 700-MHz 5-cell elliptical cavities starts to drop at E{sub acc} = 8-10 MV/m, which may be related to multipacting. Residual resistances of these cavities were measured to be 5.0-7.6 n{Omega}. The sensitivity of surface resistance to the external magnetic field was measured to be 0.22 n{Omega}/mG. Q disease tests have shown no significant Q{sub 0} degradation for both elliptical cavities and a spoke cavity with our 100 {micro}m BCP
Recommended from our members
Design of a [Beta]=0.175 2-Gap Spoke Resonator
In this paper, we present the electromagnetic and structural design of a low-b superconducling spoke resonator for a beam-test in the Low Energy Demonstration Accelerator (LEDA). This test is part of the Advanced Accelerator Applications (AAA) project. Recently, the sole use of superconducting resonators from 6.7 MeV on has been approved for this project. The beam test will use the lowest- resonator from this accelerator design. The choices of the cavity dimensions are driven by its use imrnediately after the LEDA Radio-Frequency Quadrupole (RFQ). The frequency is 350 MHz, the lengt corresponds to a geometric p (Ps) of 0.175. Our design approach has been to carry out an integrated RF and mechanical design from the start. The final cavity is well understood in terms of IW: and mechanical properties. The RF properties, like Q, WQ, peak surface fields and acceleration efficiency are very reasonable for such a low- structure. 'The design also includes power coupler, vacuum and pick-up ports and lheir influences. The mechanical design added tuning sensitivities, tuning forces, stiffening schemes and the understanding of stresses under various load conditions. This presentation reflects changes in the coupling port and the beam aperture compared to a previously presented design