2,422 research outputs found
Contribution of organic farming to conserving and improving biodiversity in Germany avi-fauna as an example
Although it is the aim of organic farming to increase biodiversity, there is little information about the impact of organic farming on birds. From 2001 to 2003, the number of breeding birds was recorded annually on the organic experimental farm of the Institute of Organic Farming (600 ha), and on adjacent conventional and organic farms (60 ha and 40 ha) in Northern Germany. The number of skylark (Alauda arvensis) territories increased considerably after the conversion from conventional to organic farming on the premises of the Institute. Their number remained unvaried on the conventional farm. The highest density of skylark territories was found on the farm which has been under organic management for many years. The number of yellowhammer (Emberiza citronella) territories fluctuated largely in relation to the availability of field margin strips, both on conventional and organic land. During the breeding season aerial hunters (swallows and swifts) and raptors significantly preferred organic fields. Outside the breeding season, densities of raptors (in autumn and in winter), seed-eating birds (in autumn) and insect-eating birds (in autumn) were significantly higher on organic than on conventional fields
Nbs1 ChIP-Seq Identifies Off-Target DNA Double-Strand Breaks Induced by AID in Activated Splenic B Cells
Activation-induced cytidine deaminase (AID) is required for initiation of Ig class switch recombination (CSR) and somatic hypermutation (SHM) of antibody genes during immune responses. AID has also been shown to induce chromosomal translocations, mutations, and DNA double-strand breaks (DSBs) involving non-Ig genes in activated B cells. To determine what makes a DNA site a target for AID-induced DSBs, we identify off-target DSBs induced by AID by performing chromatin immunoprecipitation (ChIP) for Nbs1, a protein that binds DSBs, followed by deep sequencing (ChIP-Seq). We detect and characterize hundreds of off-target AID-dependent DSBs. Two types of tandem repeats are highly enriched within the Nbs1-binding sites: long CA repeats, which can form Z-DNA, and tandem pentamers containing the AID target hotspot WGCW. These tandem repeats are not nearly as enriched at AID-independent DSBs, which we also identified. Msh2, a component of the mismatch repair pathway and important for genome stability, increases off-target DSBs, similar to its effect on Ig switch region DSBs, which are required intermediates during CSR. Most of the off-target DSBs are two-ended, consistent with generation during G1 phase, similar to DSBs in Ig switch regions. However, a minority are one-ended, presumably due to conversion of single-strand breaks to DSBs during replication. One-ended DSBs are repaired by processes involving homologous recombination, including break-induced replication repair, which can lead to genome instability. Off-target DSBs, especially those present during S phase, can lead to chromosomal translocations, deletions and gene amplifications, resulting in the high frequency of B cell lymphomas derived from cells that express or have expressed AID
Positronic lithium, an electronically stable Li-e ground state
Calculations of the positron-Li system were performed using the Stochastic
Variational Method and yielded a minimum energy of -7.53208 Hartree for the L=0
ground state. Unlike previous calculations of this system, the system was found
to be stable against dissociation into the Ps + Li channel with a binding
energy of 0.00217 Hartree and is therefore electronically stable. This is the
first instance of a rigorous calculation predicting that it is possible to
combine a positron with a neutral atom and form an electronically stable bound
state.Comment: 11 pages, 2 tables. To be published in Phys.Rev.Let
A temperature and magnetic field dependence Mรถssbauer study of ษ-Fe2O3
ษ-Fe2O3 was synthesized as nanoparticles by a pre-vacuum heat treatment of yttrium iron garnet (Y3Fe5O12) in a silica matrix at 300-C followed by sintering in air at 1,000-C for up to 10 h. It displays complex magnetic properties that are characterized by two transitions, one at 480 K from a paramagnet (P) to canted antiferromagnet (CAF1) and the second at ca. 120 K from the canted antiferromagnet (CAF1) to another canted antiferromagnet (CAF2). CAF2 has a smaller resultant magnetic moment (i.e. smaller canting angle) than CAF1. Analysis of the zero-field Mossbauer spectra at different temperatures shows an associated discontinuity of the hyperfine field around 120 K. In an applied field, the different magnetic sublattices were identified and the directions of their moments were assigned. The moments of the two sublattices are antiparallel and collinear at 160 K but are at right angle to each other at 4.2 K
Inducible DNA breaks in Ig S regions are dependent on AID and UNG
Class switch recombination (CSR) occurs by an intrachromosomal deletion whereby the IgM constant region gene (Cฮผ) is replaced by a downstream constant region gene. This unique recombination event involves formation of double-strand breaks (DSBs) in immunoglobulin switch (S) regions, and requires activation-induced cytidine deaminase (AID), which converts cytosines to uracils. Repair of the uracils is proposed to lead to DNA breaks required for recombination. Uracil DNA glycosylase (UNG) is required for most CSR activity although its role is disputed. Here we use ligation-mediated PCR to detect DSBs in S regions in splenic B cells undergoing CSR. We find that the kinetics of DSB induction corresponds with AID expression, and that DSBs are AID- and UNG-dependent and occur preferentially at G:C basepairs in WRC/GYW AID hotspots. Our results indicate that AID attacks cytosines on both DNA strands, and staggered breaks are processed to blunt DSBs at the initiating ss break sites. We propose a model to explain the types of end-processing events observed
Natural Toxins for Use in Pest Management
Natural toxins are a source of new chemical classes of pesticides, as well as environmentally and toxicologically safer molecules than many of the currently used pesticides. Furthermore, they often have molecular target sites that are not exploited by currently marketed pesticides. There are highly successful products based on natural compounds in the major pesticide classes. These include the herbicide glufosinate (synthetic phosphinothricin), the spinosad insecticides, and the strobilurin fungicides. These and other examples of currently marketed natural product-based pesticides, as well as natural toxins that show promise as pesticides from our own research are discussed
APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination
Antibody class switch recombination (CSR) occurs by an intrachromosomal deletion requiring generation of double-stranded breaks (DSBs) in switch-region DNA. The initial steps in DSB formation have been elucidated, involving cytosine deamination by activation-induced cytidine deaminase and generation of abasic sites by uracil DNA glycosylase. However, it is not known how abasic sites are converted into single-stranded breaks and, subsequently, DSBs. Apurinic/apyrimidinic endonuclease (APE) efficiently nicks DNA at abasic sites, but it is unknown whether APE participates in CSR. We address the roles of the two major mammalian APEs, APE1 and APE2, in CSR. APE1 deficiency causes embryonic lethality in mice; we therefore examined CSR and DSBs in mice deficient in APE2 and haploinsufficient for APE1. We show that both APE1 and APE2 function in CSR, resulting in the DSBs necessary for CSR and thereby describing a novel in vivo function for APE2
Positron and positronium affinities in the work-formalism Hartree-Fock approximation
Positron binding to anions is investigated within the work formalism proposed
by Harbola and Sahni for the halide anions and the systems Li^- through O^-
excluding Be^- and N^-. The toal ground-state energies of the anion-positron
bound systems are empirically found to be an upper bound to the Hartree-Fock
energies. The computed expectation values as well as positron and positronium
affinities are in good agreement with their restricted Hartree-Fock
counterparts. Binding of a positron to neutral species is also investigated
using an iterative method.Comment: 12 pages, to appear in Physical Review
- โฆ