5 research outputs found

    Nogo-A Regulates Neural Precursor Migration in the Embryonic Mouse Cortex

    Get PDF
    Although Nogo-A has been intensively studied for its inhibitory effect on axonal regeneration in the adult central nervous system, little is known about its function during brain development. In the embryonic mouse cortex, Nogo-A is expressed by radial precursor/glial cells and by tangentially migrating as well as postmigratory neurons. We studied radially migrating neuroblasts in wild-type and Nogo-A knockout (KO) mouse embryos. In vitro analysis showed that Nogo-A and its receptor components NgR, Lingo-1, TROY, and p75 are expressed in cells emigrating from embryonic forebrain–derived neurospheres. Live imaging revealed an increased cell motility when Nogo-A was knocked out or blocked with antibodies. Antibodies blocking NgR or Lingo-1 showed the same motility-enhancing effect supporting a direct role of surface Nogo-A on migration. Bromodeoxyuridine (BrdU) labeling of embryonic day (E)15.5 embryos demonstrated that Nogo-A influences the radial migration of neuronal precursors. At E17.5, the normal transient accumulation of radially migrating precursors within the subventricular zone was not detectable in the Nogo-A KO mouse cortex. At E19, migration to the upper cortical layers was disturbed. These findings suggest that Nogo-A and its receptor complex play a role in the interplay of adhesive and repulsive cell interactions in radial migration during cortical development

    Simultaneous BOLD fMRI and fiber-optic calcium recording in rat neocortex

    Full text link
    Functional magnetic resonance imaging (fMRI) based on blood oxygen level-dependent (BOLD) contrast is widely used for probing brain activity, but its relationship to underlying neural activity remains elusive. Here, we combined fMRI with fiber-optic recordings of fluorescent calcium indicator signals to investigate this relationship in rat somatosensory cortex. Electrical forepaw stimulation (1-10 Hz) evoked fast calcium signals of neuronal origin that showed frequency-dependent adaptation. Additionally, slower calcium signals occurred in astrocyte networks, as verified by astrocyte-specific staining and two-photon microscopy. Without apparent glia activation, we could predict BOLD responses well from simultaneously recorded fiber-optic signals, assuming an impulse response function and taking into account neuronal adaptation. In cases with glia activation, we uncovered additional prolonged BOLD signal components. Our findings highlight the complexity of fMRI BOLD signals, involving both neuronal and glial activity. Combined fMRI and fiber-optic recordings should help to clarify cellular mechanisms underlying BOLD signals

    Imaging crossing fibers in mouse, pig, monkey, and human brain using small-angle X-ray scattering

    No full text
    Myelinated axons (nerve fibers) efficiently transmit signals throughout the brain via action potentials. Multiple methods that are sensitive to axon orientations, from microscopy to magnetic resonance imaging, aim to reconstruct the brain's structural connectome. As billions of nerve fibers traverse the brain with various possible geometries at each point, resolving fiber crossings is necessary to generate accurate structural connectivity maps. However, doing so with specificity is a challenging task because signals originating from oriented fibers can be influenced by brain (micro)structures unrelated to myelinated axons. X-ray scattering can specifically probe myelinated axons due to the periodicity of the myelin sheath, which yields distinct peaks in the scattering pattern. Here, we show that small-angle X-ray scattering (SAXS) can be used to detect myelinated, axon-specific fiber crossings. We first demonstrate the capability using strips of human corpus callosum to create artificial double- and triple-crossing fiber geometries, and we then apply the method in mouse, pig, vervet monkey, and human brains. We compare results to polarized light imaging (3D-PLI), tracer experiments, and to outputs from diffusion MRI that sometimes fails to detect crossings. Given its specificity, capability of 3-dimensional sampling and high resolution, SAXS could serve as a ground truth for validating fiber orientations derived using diffusion MRI as well as microscopy-based methods.ISSN:1742-7061ISSN:1878-756

    Mutations in NONO lead to syndromic intellectual disability and inhibitory synaptic defects

    Full text link
    The NONO protein has been characterized as an important transcriptional regulator in diverse cellular contexts. Here we show that loss of NONO function is a likely cause of human intellectual disability and that NONO-deficient mice have cognitive and affective deficits. Correspondingly, we find specific defects at inhibitory synapses, where NONO regulates synaptic transcription and gephyrin scaffold structure. Our data identify NONO as a possible neurodevelopmental disease gene and highlight the key role of the DBHS protein family in functional organization of GABAergic synapses
    corecore