4,840 research outputs found
Nondestructive readout for a superconducting flux qubit
We present a new readout method for a superconducting flux qubit, based on
the measurement of the Josephson inductance of a superconducting quantum
interference device that is inductively coupled to the qubit. The intrinsic
flux detection efficiency and back-action are suitable for a fast and
nondestructive determination of the quantum state of the qubit, as needed for
readout of multiple qubits in a quantum computer. We performed spectroscopy of
a flux qubit and we measured relaxation times of the order of 80 .Comment: 4 pages, 4 figures; modified content, figures and references;
accepted for publication in Phys. Rev. Let
QND measurement of a superconducting qubit in the weakly projective regime
Quantum state detectors based on switching of hysteretic Josephson junctions
biased close to their critical current are simple to use but have strong
back-action. We show that the back-action of a DC-switching detector can be
considerably reduced by limiting the switching voltage and using a fast
cryogenic amplifier, such that a single readout can be completed within 25 ns
at a repetition rate of 1 MHz without loss of contrast. Based on a sequence of
two successive readouts we show that the measurement has a clear quantum
non-demolition character, with a QND fidelity of 75 %.Comment: submitted to PR
Low-crosstalk bifurcation detectors for coupled flux qubits
We present experimental results on the crosstalk between two AC-operated
dispersive bifurcation detectors, implemented in a circuit for high-fidelity
readout of two strongly coupled flux qubits. Both phase-dependent and
phase-independent contributions to the crosstalk are analyzed. For proper
tuning of the phase the measured crosstalk is 0.1 % and the correlation between
the measurement outcomes is less than 0.05 %. These results show that
bifurcative readout provides a reliable and generic approach for multi-partite
correlation experiments.Comment: Copyright 2010 American Institute of Physics. This article may be
downloaded for personal use only. Any other use requires prior permission of
the author and the American Institute of Physics. The following article
appeared in Applied Physics Letters and may be found at
http://link.aip.org/link/?apl/96/12350
Palaeoclimate - A balmy Arctic
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62910/1/432814a.pd
Josephson squelch filter for quantum nanocircuits
We fabricated and tested a squelch circuit consisting of a copper powder
filter with an embedded Josephson junction connected to ground. For small
signals (squelch-ON), the small junction inductance attenuates strongly from DC
to at least 1 GHz, while for higher frequencies dissipation in the copper
powder increases the attenuation exponentially with frequency. For large
signals (squelch-OFF) the circuit behaves as a regular metal powder filter. The
measured ON/OFF ratio is larger than 50dB up to 50 MHz. This squelch can be
applied in low temperature measurement and control circuitry for quantum
nanostructures such as superconducting qubits and quantum dots.Comment: Corrected and completed references 6,7,8. Updated some minor details
in figure
ON NON-RIEMANNIAN PARALLEL TRANSPORT IN REGGE CALCULUS
We discuss the possibility of incorporating non-Riemannian parallel transport
into Regge calculus. It is shown that every Regge lattice is locally equivalent
to a space of constant curvature. Therefore well known-concepts of differential
geometry imply the definition of an arbitrary linear affine connection on a
Regge lattice.Comment: 12 pages, Plain-TEX, two figures (available from the author
An Experimental Microarchitecture for a Superconducting Quantum Processor
Quantum computers promise to solve certain problems that are intractable for
classical computers, such as factoring large numbers and simulating quantum
systems. To date, research in quantum computer engineering has focused
primarily at opposite ends of the required system stack: devising high-level
programming languages and compilers to describe and optimize quantum
algorithms, and building reliable low-level quantum hardware. Relatively little
attention has been given to using the compiler output to fully control the
operations on experimental quantum processors. Bridging this gap, we propose
and build a prototype of a flexible control microarchitecture supporting
quantum-classical mixed code for a superconducting quantum processor. The
microarchitecture is based on three core elements: (i) a codeword-based event
control scheme, (ii) queue-based precise event timing control, and (iii) a
flexible multilevel instruction decoding mechanism for control. We design a set
of quantum microinstructions that allows flexible control of quantum operations
with precise timing. We demonstrate the microarchitecture and microinstruction
set by performing a standard gate-characterization experiment on a transmon
qubit.Comment: 13 pages including reference. 9 figure
Deterministic delivery of remote entanglement on a quantum network
Large-scale quantum networks promise to enable secure communication,
distributed quantum computing, enhanced sensing and fundamental tests of
quantum mechanics through the distribution of entanglement across nodes. Moving
beyond current two-node networks requires the rate of entanglement generation
between nodes to exceed their decoherence rates. Beyond this critical
threshold, intrinsically probabilistic entangling protocols can be subsumed
into a powerful building block that deterministically provides remote entangled
links at pre-specified times. Here we surpass this threshold using diamond spin
qubit nodes separated by 2 metres. We realise a fully heralded single-photon
entanglement protocol that achieves entangling rates up to 39 Hz, three orders
of magnitude higher than previously demonstrated two-photon protocols on this
platform. At the same time, we suppress the decoherence rate of remote
entangled states to 5 Hz by dynamical decoupling. By combining these results
with efficient charge-state control and mitigation of spectral diffusion, we
are able to deterministically deliver a fresh remote state with average
entanglement fidelity exceeding 0.5 at every clock cycle of 100 ms
without any pre- or post-selection. These results demonstrate a key building
block for extended quantum networks and open the door to entanglement
distribution across multiple remote nodes.Comment: v2 - updated to include relevant citatio
- …