151 research outputs found

    Characterization of the Metabolically Modified Heavy Metal-Resistant Cupriavidus metallidurans Strain MSR33 Generated for Mercury Bioremediation

    Get PDF
    BACKGROUND: Mercury-polluted environments are often contaminated with other heavy metals. Therefore, bacteria with resistance to several heavy metals may be useful for bioremediation. Cupriavidus metallidurans CH34 is a model heavy metal-resistant bacterium, but possesses a low resistance to mercury compounds. METHODOLOGY/PRINCIPAL FINDINGS: To improve inorganic and organic mercury resistance of strain CH34, the IncP-1β plasmid pTP6 that provides novel merB, merG genes and additional other mer genes was introduced into the bacterium by biparental mating. The transconjugant Cupriavidus metallidurans strain MSR33 was genetically and biochemically characterized. Strain MSR33 maintained stably the plasmid pTP6 over 70 generations under non-selective conditions. The organomercurial lyase protein MerB and the mercuric reductase MerA of strain MSR33 were synthesized in presence of Hg(2+). The minimum inhibitory concentrations (mM) for strain MSR33 were: Hg(2+), 0.12 and CH(3)Hg(+), 0.08. The addition of Hg(2+) (0.04 mM) at exponential phase had not an effect on the growth rate of strain MSR33. In contrast, after Hg(2+) addition at exponential phase the parental strain CH34 showed an immediate cessation of cell growth. During exposure to Hg(2+) no effects in the morphology of MSR33 cells were observed, whereas CH34 cells exposed to Hg(2+) showed a fuzzy outer membrane. Bioremediation with strain MSR33 of two mercury-contaminated aqueous solutions was evaluated. Hg(2+) (0.10 and 0.15 mM) was completely volatilized by strain MSR33 from the polluted waters in presence of thioglycolate (5 mM) after 2 h. CONCLUSIONS/SIGNIFICANCE: A broad-spectrum mercury-resistant strain MSR33 was generated by incorporation of plasmid pTP6 that was directly isolated from the environment into C. metallidurans CH34. Strain MSR33 is capable to remove mercury from polluted waters. This is the first study to use an IncP-1β plasmid directly isolated from the environment, to generate a novel and stable bacterial strain useful for mercury bioremediation

    Heterologous expression and secretion of a Streptomyces scabies esterase in Streptomyces lividans and Escherichia coli.

    Get PDF
    The esterase gene from Streptomyces scabies FL1 was cloned and expressed in Streptomyces lividans on plasmids pIJ486 and pIJ702. In S. lividans, the esterase gene was expressed during later stages of growth and was regulated by zinc, as is seen with S. scabies. The 36-kDa secreted form of the esterase was purified from S. lividans. N-terminal amino acid sequencing indicated that the processing site utilized in S. lividans for the removal of the signal sequence was the same as that recognized for processing in S. scabies. Western blots (immunoblots) revealed the presence of a 40-kDa precursor form of the esterase in cytoplasmic extracts. A 23-amino-acid deletion was introduced into the putative signal sequence for the esterase. When this deleted form of the esterase was expressed in S. lividans, a cytoplasmic 38-kDa precursor protein was produced but no secreted esterase was detected, suggesting the importance of the deleted sequence for efficient processing and secretion. The esterase gene was also cloned into the pUC119 plasmid in Escherichia coli. By using the lac promoter sequence, the esterase gene was expressed, and the majority of the esterase was localized to the periplasmic space

    Exploring Metagenomics in the Laboratory of an Introductory Biology Course

    No full text
    <p>Four laboratory modules were designed for introductory biology students to explore the field of metagenomics. Students collected microbes from environmental samples, extracted the DNA, and amplified 16S rRNA gene sequences using polymerase chain reaction (PCR). Students designed functional metagenomics screens to determine and compare antibiotic resistance profiles among the samples. Bioinformatics tools were used to generate and interpret phylogenetic trees and identify homologous genes. A pretest and posttest were used to assess learning gains, and the results indicated that these modules increased student performance by an average of 22%. Here we describe ways to engage students in metagenomics-related research and provide readers with ideas for how they can start developing metagenomics exercises for their own classrooms.</p><p> </p><p><em>Editor's Note</em>:</p><p><em>The ASM advocates that students must successfully demonstrate the ability to explain and practice safe laboratory techniques. For more information, read the laboratory safety section of the ASM Curriculum Recommendations: Introductory Course in Microbiology and the Guidelines for Biosafety in Teaching Laboratories, available at <a>www.asm.org</a>. The Editors of </em>JMBE <em>recommend that adopters of the protocols included in this article follow a minimum of Biosafety Level 1 practices.</em></p
    corecore