856 research outputs found

    A Spin-1/2 Model for CsCuCl_3 in an External Magnetic Field

    Full text link
    CsCuCl_3 is a ferromagnetically stacked triangular spin-1/2 antiferromagnet. We discuss models for its zero-temperature magnetization process. The models range from three antiferromagnetically coupled ferromagnetic chains to the full three-dimensional situation. The situation with spin-1/2 is treated by expansions around the Ising limit and exact diagonalization. Further, weak-coupling perturbation theory is used mainly for three coupled chains which are also investigated numerically using the density-matrix renormalization group technique. We find that already the three-chain model gives rise to the plateau-like feature at one third of the saturation magnetization which is observed in magnetization experiments on CsCuCl_3 for a magnetic field perpendicular to the crystal axis. For a magnetic field parallel to the crystal axis, a jump is observed in the experimental magnetization curve in the region of again about one third of the saturation magnetization. In contrast to earlier spinwave computations, we do not find any evidence for such a jump with the model in the appropriate parameter region.Comment: 13 pages LaTeX2e with EPJ macro package (included), 8 (e)ps figures included using psfig.sty; this is the final version to appear in Eur. Phys. J B; a few further explanations and one reference adde

    Fluctuation-induced phase in CsCuCl3 in transverse magnetic field: Theory

    Full text link
    CsCuCl3 is a quantum triangular antiferromagnet, ferromagnetically stacked, with an incommensurate (IC) structure due to a Dzyaloshinskii-Moriya interaction. Because of the classical degeneracy caused by the frustration, fluctuations in CsCuCl3 have extraordinarily large effects, such as the phase transition in longitudinal magnetic field (normal to the planes, parallel to the IC wavenumber q) and the plateau in q in transverse field (perpendicular to q). We argue that fluctuations are responsible also for the new IC phase discovered in transverse field near the Neel temperature T_N, by T. Werner et al. [Solid State Commun. 102, p.609 (1997)]. We develop and analyse the corresponding minimal Landau theory; the effects of fluctuations on the frustration are included phenomenologically, by means of a biquadratic term. The Landau theory gives two IC phases, one familiar from previous studies; properties of the new IC phase, which occupies a pocket of the temperature-field phase diagram near T_N, agree qualitatively with those of the new phase found experimentally.Comment: 12 pages, revtex, 4 postscript figures, submitted to J. Phys: Condens. Matte

    Kondo Quartet

    Full text link
    This article describes some recently obtained results on the low-energy properties of the "Kondo quartet" model of two spin-1/2 impurities interacting with two channels (flavours) of conduction electrons. We shall particularly emphasize the connections between conformal field-theory methods and bosonisation approaches, which are first illustrated on the example of the single-impurity, two-channel Kondo problem. This article is dedicated to the memory of Claude Itzykson, and will appear in the Proceedings of the Conference "Advanced Quantum Field Theory", held in La Londe Les Maures, Sept. 1996 (Nucl. Phys. B, Proc. Supp.; V.Rittenberg, J.Fr\"{o}lich and A.Schwimmer eds.).Comment: 18 pages, RevTeX3.0, 2 .ps figure

    Auxiliary particle theory of threshold singularities in photoemission and X-ray absorption spectra: Test of a conserving T-matrix approximation

    Full text link
    We calculate the exponents of the threshold singularities in the photoemission spectrum of a deep core hole and its X-ray absorption spectrum in the framework of a systematic many-body theory of slave bosons and pseudofermions (for the empty and occupied core level). In this representation, photoemission and X-ray absorption can be understood on the same footing; no distinction between orthogonality catastrophe and excitonic effects is necessary. We apply the conserving slave particle T-matrix approximation (CTMA), recently developed to describe both Fermi and non-Fermi liquid behavior systems with strong local correlations, to the X-ray problem as a test case. The numerical results for both photoemission and X-ray absorption are found to be in agreement with the exact infrared powerlaw behavior in the weak as well as in the strong coupling regions. We point out a close relation of the CTMA with the parquet equation approach of Nozi{\`e}res et al.Comment: 10 pages, 9 figures, published versio

    Single-pulse Laue diffraction, stroboscopic data collection and femtosecond flash photolysis on macromolecules

    Full text link
    We review the time structure of synchrotron radiation and its use for fast time-resolved diffraction experiments in macromolecular photo-cycles using flash photolysis to initiate the reaction. The source parameters and optics for ID09 at ESRF are presented together with the phase-locked chopper and femtosecond laser. The chopper can set up a 900 Hz pulse train of 100 ps pulses from the hybrid bunch-mode and, in conjunction with a femtosecond laser, it can be used for stroboscopic data collection with both monochromatic and polychromatic beams. Single-pulse Laue data from Cutinase, a 22 kD lipolic enzyme, are presented which show that the quality of single-pulse Laue patterns is sufficient to refine the excited state(s) in a reaction pathway from a known ground state. The flash photolysis technique is discussed and an example is given for heme proteins. The radiation damage from a laser pulse in the femto and picosecond range can be reduced by triggering at a wavelength where the interaction is strong. We propose the use of microcrystals between 25–50 μm for efficient photolysis with femto and picosecond pulses. The performance of circular storage rings is compared with the predicted performance of an X-ray free electron laser (XFEL). The combination of micro beams, a gain of 105105 photons per pulse and an ultrashort pulse length of 100 fs is likely to improve pulsed diffraction data very substantially. It may be used to image coherent nuclear motion at atomic resolution in ultrafast uni-molecular reactions. © 1997 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87418/2/267_1.pd

    Oblique triangular antiferromagnetic phase in CsCu1x_{1-x}Cox_xCl3_3

    Full text link
    The spin-1/2 stacked triangular antiferromagnet CsCu1x_{1-x}Cox_xCl3_3 with 0.015<x<0.0320.015<x<0.032 undergoes two phase transitions at zero field. The low-temperature phase is produced by the small amount of Co2+^{2+} doping. In order to investigate the magnetic structures of the two ordered phases, the neutron elastic scattering experiments have been carried out for the sample with x0.03x\approx 0.03. It is found that the intermediate phase is identical to the ordered phase of CsCuCl3_3, and that the low-temperature phase is an oblique triangular antiferromagnetic phase in which the spins form a triangular structure in a plane tilted from the basal plane. The tilting angle which is 42^{\circ} at T=1.6T=1.6 K decreases with increasing temperature, and becomes zero at TN2=7.2T_{\rm N2} =7.2 K. An off-diagonal exchange term is proposed as the origin of the oblique phase.Comment: 6 pages, 7 figure

    Dynamical Effective Medium Theory for Quantum Spins and Multipoles

    Full text link
    A dynamical effective medium theory is presented for quantum spins and higher multipoles such as quadrupole moments. The theory is a generalization of the spherical model approximation for the Ising model, and is accurate up to O(1/z_n) where z_n is the number of interacting neighbors. The polarization function is optimized under the condition that it be diagonal in site indices. With use of auxiliary fields and path integrals, the theory is flexibly applied to quantum spins and higher multipoles with many interacting neighbors. A Kondo-type screening of each spin is proposed for systems with extreme quantum fluctuations but without conduction electrons.Comment: 16 pages, 3 Postscript figure

    Fermi Edge Singularities and Backscattering in a Weakly Interacting 1D Electron Gas

    Full text link
    The photon-absorption edge in a weakly interacting one-dimensional electron gas is studied, treating backscattering of conduction electrons from the core hole exactly. Close to threshold, there is a power-law singularity in the absorption, I(ϵ)ϵαI(\epsilon) \propto \epsilon^{-\alpha}, with α=3/8+δ+/πδ+2/2π2\alpha = 3/8 + \delta_+/\pi - \delta_+^2/2\pi^2 where δ+\delta_+ is the forward scattering phase shift of the core hole. In contrast to previous theories, α\alpha is finite (and universal) in the limit of weak core hole potential. In the case of weak backscattering U(2kF)U(2k_F), the exponent in the power-law dependence of absorption on energy crosses over to a value α=δ+/πδ+2/2π2\alpha = \delta_+/\pi - \delta_+^2/2\pi^2 above an energy scale ϵ[U(2kF)]1/γ\epsilon^* \sim [U(2k_F)]^{1/\gamma}, where γ\gamma is a dimensionless measure of the electron-electron interactions.Comment: 8 pages + 1 postscript figure, preprint TPI-MINN-93/40-

    A novel mutation in the miR-128b gene reduces miRNA processing and leads to glucocorticoid resistance of MLL-AF4 Acute Lymphocytic Leukemia cells

    Get PDF
    MLL-AF4 Acute Lymphocytic Leukemia has a poor prognosis, and the mechanisms by which these leukemias develop are not understood despite intensive research based on well-known concepts and methods. MicroRNAs (miRNAs) are a new class of small noncoding RNAs that post-transcriptionally regulate expression of target mRNA transcripts. We recently reported that ectopic expression of miR-128b together with miR-221, two of the miRNAs downregulated in MLL-AF4 ALL, restores glucocorticoid resistance through downregulation of the MLL-AF4 chimeric fusion proteins MLL-AF4 and AF4-MLL that are generated by chromosomal translocation t(4;11). Here we report the identification of new mutations in miR-128b in RS4;11 cells, derived from MLL-AF4 ALL patient. One novel mutation significantly reduces the processing of miR-128b. Finally, this base change occurs in a primary MLL-AF4 ALL sample as an acquired mutation. These results demonstrate that the novel mutation in miR-128b in MLL-AF4 ALL alters the processing of miR-128b and that the resultant downregulation of mature miR-128b contributes to glucocorticoid resistance through the failure to downregulate the fusion oncogenes.National Institutes of Health (U.S.) (NIH Grant R01 DK068348)Netherlands Organization for Scientific ResearchDutch Cancer SocietyJapan Society for the Promotion of Scienc

    Magnetic structures of RbCuCl_3 in a transverse field

    Full text link
    A recent high-field magnetization experiment found a phase transition of unknown character in the layered, frustrated antiferromagnet RbCuCl_3, in a transverse field (in the layers). Motivated by these results, we have examined the magnetic structures predicted by a model of RbCuCl_3, using the classical approximation. At small fields, we obtain the structure already known to be optimal, an incommensurate (IC) spiral with wave vector q in the layers. At higher fields, we find a staircase of long-period commensurate (C) phases (separated initially by the low-field IC phase), then two narrow IC phases, then a fourth IC phase (also with intermediate C phases), and finally the ferromagnetically aligned phase at the saturation field H_S. The three-sublattice C states familiar from the theory of the triangular antiferromagnet are never optimal. The C phases and the two intermediate IC phases were previously unknown in this context. The magnetization is discontinuous at a field \approx 0.4H_S, in qualitative agreement with experiment, though we find much fine structure not reported.Comment: 9 pages, 8 figure
    corecore