29 research outputs found

    Critical assessment of human antibody generation in humanized mouse models

    No full text
    Immunodeficient mice reconstituted with human hematopoietic stem cells provide a small-animal model for the study of development and function of human hematopoietic cells in vivo. However, in the current models, the immune response, and especially the humoral response by the human immune cells is far from optimal. The B cells found in these mice exhibit an immature and abnormal phenotype correlating with a reduced capacity to produce antigen-specific affinity matured antibodies upon infection or immunization. Herein, we review the current state of knowledge of development, function and antibody production of human B cells and discuss the obstacles for the improvement of these models. (C) 2014 Elsevier B.V. All rights reserve

    Developmental origin of pre-DC2

    No full text
    It is generally accepted that dendritic cells can be generated from either myeloid or lymphoid derived progenitors. Ample information has been collected on the development and nature of myeloid DC type 1 (DC1). In contrast, our current understanding on the origin and function of the lymphoid derived DC type 2 (DC2) is still limited but is increasing rapidly. Here we will summarize recent findings on the developmental origin of the precursor of DC2 (pre-DC2). The presence of pre-DC2 has been revealed in bone marrow, fetal liver, and cord blood, where they develop from hematopoietic stem cells (HSC) most likely via an intermediate pro-DC2 stage. Both in human and mouse, development of pre-DC2 depends on the cytokine FLT3-ligand (FLT3-L). In addition, transcription factors such as Spi-B and members of the basic helix-loop helix (bHLH) family have been shown to be involved in the proper differentiation of HSC into pre-DC2. The human thymus contains a population of cells that closely resembles the peripheral pre-DC2, including interferon (INF)-a production after viral stimulation. Some phenotypic differences have been observed however. Furthermore, we have shown that the thymic microenvironment is able to support development of pre-DC2 from HSC in vivo. A thymus independent pathway of pre-DC2 development exists as well, although at present it is not clear where these extrathymic pre-DC2 are generated. In regard of the absence of a phenotypic defined pro-DC2 population in the thymus, we speculate that development of thymic pre-DC2 may differ from peripheral pre-DC2. The challenge of the near future will be to determine the role of pre-DC2 during thymic T cell developmen

    Development of human plasmacytoid dendritic cells depends on the combined action of the basic helix-loop-helix factor E2-2 and the Ets factor Spi-B

    No full text
    Plasmacytoid dendritic cells (pDC) are central players in the innate and adaptive immune response against viral infections. The molecular mechanism that underlies pDC development from progenitor cells is only beginning to be elucidated. Previously, we reported that the Ets factor Spi-B and the inhibitors of DNA binding protein 2 (Id2) or Id3, which antagonize E-protein activity, are crucially involved in promoting or impairing pDC development, respectively. Here we show that the basic helix-loop-helix protein E2-2 is predominantly expressed in pDC, but not in their progenitor cells or conventional DC. Forced expression of E2-2 in progenitor cells stimulated pDC development. Conversely, inhibition of E2-2 expression by RNA interference impaired the generation of pDC suggesting a key role of E2-2 in development of these cells. Notably, Spi-B was unable to overcome the Id2 enforced block in pDC development and moreover Spi-B transduced pDC expressed reduced Id2 levels. This might indicate that Spi-B contributes to pDC development by promoting E2-2 activity. Consistent with notion, simultaneous overexpression of E2-2 and Spi-B in progenitor cells further stimulated pDC development. Together our results provide additional insight into the transcriptional network controlling pDC development as evidenced by the joint venture of E2-2 and Spi-

    Prospects and limitations of T cell receptor gene therapy

    No full text
    Adoptive transfer of antigen-specific T cells is an attractive means to provide cancer patients with immune cells of a desired specificity and the efficacy of such adoptive transfers has been demonstrated in several clinical trials. Because the T cell receptor is the single specificity-determining molecule in T cell function, adoptive transfer of TCR genes into patient T cells may be used as an alternative approach for the transfer of tumor-specific T cell immunity. On theoretical grounds, TCR gene therapy has two substantial advantages over conventional cellular transfer. First, it circumvents the demanding process of in vitro generation of large numbers of specific immune cells. Second, it allows the use of a set of particularly effective TCR genes in large patient groups. Conversely, TCR gene therapy may be associated with a number of specific problems that are not confronted during classical cellular therapy. Here we review our current understanding of the potential and possible problems of TCR gene therapy, as based on in vitro experiments, mouse model systems and phase I clinical trials. Furthermore, we discuss the prospects of widespread clinical application of this gene therapy approach for the treatment of human cance

    Synergy between IL-15 and Id2 Promotes the Expansion of Human NK Progenitor Cells, Which Can Be Counteracted by the E Protein HEB Required To Drive T Cell Development

    No full text
    The cytokine IL-15 and the inhibitor of DNA binding (Id) 2, which negatively regulates the activity of basic helix-loop-helix transcription factors, have been shown to play key roles in NK cell development. Consistent with this, exogenous IL-15 added to human thymic progenitor cells stimulated their development into NK cells at the expense of T cells both in fetal thymic organ culture and in coculture with stromal cells expressing the Notch ligand Delta-like 1. Overexpression of Id2 in thymic progenitor cells stimulated NK cell development and blocked T cell development. This, in part, is attributed to inhibition of the transcriptional activity of the E protein HEB, which we show in this study is the only E protein that enhanced T cell development. Notably, Id2 increased a pool of lineage CD1a(-)CD5(+) progenitor cells that in synergy with IL-15 furthered expansion and differentiation into NK cells. Taken together, our findings point to a dualistic function of Id2 in controlling T/NK cell lineage decisions; T cell development is impaired by Id2, most likely by sequestering HEB, whereas NK cell development is promoted by increasing a pool of CD1a(-)CD5(+) NK cell progenitors, which together with IL-15 differentiate into mature NK cells. The Journal of Immunology, 2010, 184: 6670-667

    Delta-like1-induced Notch1 signaling regulates the human plasmacytoid dendritic cell versus T-cell lineage decision through control of GATA-3 and Spi-B

    No full text
    Human early thymic precursors have the potential to differentiate into multiple cell lineages, including T cells and plasmacytoid dendritic cells (pDCs). This decision is guided by the induction or silencing of lineage-specific transcription factors. The ETS family member Spi-B is a key regulator of pDC development, whereas T-cell development is critically dependent on GATA-3. Here we show that triggering of the Notch1 signaling pathway by Delta-like1 controls the T/pDC lineage decision by regulating the balance between these factors. CD34+ CD1a- thymic progenitor cells express Notch1, but down-regulate this receptor when differentiating into pDCs. On coculture with stromal cell lines expressing either human Delta-like1 (DL1) or Jagged1 (Jag1) Notch ligands, thymic precursors express GATA-3 and develop into CD4+ CD8+ TCRalphabeta+ T cells. On the other hand, DL1, but not Jag1, down-regulates Spi-B expression, resulting in impaired development of pDCs. The Notch1-induced block in pDC development can be relieved through the ectopic expression of Spi-B. These data indicate that DL1-induced activation of the Notch1 pathway controls the lineage commitment of early thymic precursors by altering the levels between Spi-B and GATA-

    The transcription factor Spi-B is expressed in plasmacytoid DC precursors and inhibits T-, B-, and NK-cell development

    No full text
    Human plasmacytoid dendritic cells (pCs), also called type 2 dendritic cell precursors or natural interferon (IFN)producing cells, represent a cell type with distinctive phenotypic and functional features. They are present in the thymus and probably share a common precursor with T and natural killer (INK) cells. In an effort to identify gene's that control pDC development we searched for genes of which the expression is restricted to human pDC using a cDNA subtraction technique with activated monocyte-derived DCs (MoDCs) as competitor. We identified the transcription factor Spi-B to be expressed in pDCs but not in Mo-DCs. Spi-B expression in pDCs was maintained on in vitro maturation of pDCs. Spi-B was expressed in early CD34(+)CD38(-) hematopoietic progenitors and in CD34(+)CD1a(-) thymic precursors. Spi-B expression is down-regulated when uncommitted CD34(+)CD1a(-) thymic precursors differentiate into committed CD34(+)CD1a(+) pre-T cells. Overexpression of Spi-B in hematopoietic progenitor cells resulted in inhibition of development of T cells both in vitro and in vivo. In addition, development of progenitor cells into B and INK cells in vitro was also inhibited by Spi-B overexpression. Our results indicate that Spi-B is involved in the control of pDC development by limiting the capacity of progenitor cells to develop into other lymphoid lineages. (C) 2003 by The American Society of Hematolog

    Spi-B inhibits human plasma cell differentiation by repressing BLIMP1 and XBP-1 expression

    No full text
    The terminal differentiation of B cells into antibody-secreting plasma cells is tightly regulated by a complex network of transcription factors. Here we evaluated the role of the Ets factor Spi-B during terminal differentiation of human B cells. All mature tonsil and peripheral blood B-cell subsets expressed Spi-B, with the exception of plasma cells. Overexpression of Spi-B in CD19(+) B cells inhibited, similar to the known inhibitor BCL-6, the expression of plasma cell-associated surface markers and transcription factors as well as immunoglobulin production, ie, in vitro plasma cell differentiation. The arrest in B-cell differentiation enforced by Spi-B was independent of the transactivation domain, but dependent on the Ets-domain. By chromatin immunoprecipitation and assays using an inducible Spi-B construct BLIMP1 and XBP-1 were identified as direct target genes of Spi-B mediated repression. We propose a novel role for Spi-B in maintenance of germinal center and memory B cells by direct repression of major plasma cell factors and thereby plasma cell differentiatio
    corecore