5 research outputs found

    Implantable myoelectric sensors (IMESs) for intramuscular electromyogram recording

    No full text

    Implantable myoelectric sensors (IMESs) for intramuscular electromyogram recording

    No full text
    We have developed a multichannel electrogmyography sensor system capable of receiving and processing signals from up to 32 implanted myoelectric sensors (IMES). The appeal of implanted sensors for myoelectric control is that electromyography (EMG) signals can be measured at their source providing relatively cross-talk-free signals that can be treated as independent control sites. An external telemetry controller receives telemetry sent over a transcutaneous magnetic link by the implanted electrodes. The same link provides power and commands to the implanted electrodes. Wireless telemetry of EMG signals from sensors implanted in the residual musculature eliminates the problems associated with percutaneous wires, such as infection, breakage, and marsupialization. Each implantable sensor consists of a custom-designed application-specified integrated circuit that is packaged into a bio-compatible RF BION capsule from the Alfred E. Mann Foundation. Implants are designed for permanent long-term implantation with no servicing requirements. We have a fully operational system. The system has been tested in animals. Implants have been chronically implanted in the legs of three cats and are still completely operational four months after implantation

    A novel self-aligning mechanism to decouple force and torques for a planar exoskeleton joint

    Get PDF
    The design of exoskeletons is a popular and promising area of research both for restoring lost function and rehabilitation, and for augmentation in military and industrial applications. A major practical challenge to the comfort and usability for exoskeletons is the need to avoid misalignment of the exoskeletal joint with the underlying human joint. Alignment mismatches are difficult to prevent due to large inter-user variability, and can create large stresses on the attachment system and underlying human anatomy. Previous self-aligning systems have been proposed in literature, which can compensate for muscle forces, but leave large residual forces passed directly to the skeletal system. In this paper we propose a new mechanism to reduce misalignment complications. A decoupling approach is proposed which allows large forces to be carried by the exoskeletal system while allowing both the muscle and skeletal joint force presented to the user to be compensated to any desired degree.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin
    corecore