908 research outputs found

    Reducing the linewidth of a diode laser below 30 Hz by stabilization to a reference cavity with finesse above 10^5

    Get PDF
    An extended cavity diode laser operating in the Littrow configuration emitting near 657 nm is stabilized via its injection current to a reference cavity with a finesse of more than 10^5 and a corresponding resonance linewidth of 14 kHz. The laser linewidth is reduced from a few MHz to a value below 30 Hz. The compact and robust setup appears ideal for a portable optical frequency standard using the Calcium intercombination line.Comment: 8 pages, 4 figures on 3 additional pages, corrected version, submitted to Optics Letter

    Oscillatory subglacial drainage in the absence of surface melt

    Get PDF
    The presence of strong diurnal cycling in basal water pressure records obtained during the melt season is well established for many glaciers. The behaviour of the drainage system outside the melt season is less well understood. Here we present borehole observations from a surge-type valley glacier in the St Elias Mountains, Yukon Territory, Canada. Our data indicate the onset of strongly correlated multi-day oscillations in water pressure in multiple boreholes straddling a main drainage axis, starting several weeks after the disappearance of a dominant diurnal mode in August 2011 and persisting until at least January 2012, when multiple data loggers suffered power failure. Jökulhlaups provide a template for understanding spontaneous water pressure oscillations not driven by external supply variability. Using a subglacial drainage model, we show that water pressure oscillations can also be driven on a much smaller scale by the interaction between conduit growth and distributed water storage in smaller water pockets, basal crevasses and moulins, and that oscillations can be triggered when water supply drops below a critical value. We suggest this in combination with a steady background supply of water from ground water or englacial drainage as a possible explanation for the observed wintertime pressure oscillations

    Normal mode splitting and mechanical effects of an optical lattice in a ring cavity

    Full text link
    A novel regime of atom-cavity physics is explored, arising when large atom samples dispersively interact with high-finesse optical cavities. A stable far detuned optical lattice of several million rubidium atoms is formed inside an optical ring resonator by coupling equal amounts of laser light to each propagation direction of a longitudinal cavity mode. An adjacent longitudinal mode, detunedby about 3 GHz, is used to perform probe transmission spectroscopy of the system. The atom-cavity coupling for the lattice beams and the probe is dispersive and dissipation results only from the finite photon-storage time. The observation of two well-resolved normal modes demonstrates the regime of strong cooperative coupling. The details of the normal mode spectrum reveal mechanical effects associated with the retroaction of the probe upon the optical lattice.Comment: 4 pages, 3 figure

    Point counting on reductions of CM elliptic curves

    Get PDF
    We give explicit formulas for the number of points on reductions of elliptic curves with complex multiplication by any imaginary quadratic field. We also find models for CM Q\mathbf{Q}-curves in certain cases. This generalizes earlier results of Gross, Stark, and others.Comment: Minor corrections. To appear in Journal of Number Theor

    Computing Hilbert Class Polynomials

    Get PDF
    We present and analyze two algorithms for computing the Hilbert class polynomial HDH_D . The first is a p-adic lifting algorithm for inert primes p in the order of discriminant D < 0. The second is an improved Chinese remainder algorithm which uses the class group action on CM-curves over finite fields. Our run time analysis gives tighter bounds for the complexity of all known algorithms for computing HDH_D, and we show that all methods have comparable run times

    Mobilizing heads and hearts for wildlife conservation

    Get PDF
    Highlighting the shared evolutionary relationships between humans and animals — and recognizing that all species, including humans, are unique in their own way — may facilitate caring for and conserving animals by tapping into a human emotion: empathy

    Mobilizing heads and hearts for wildlife conservation

    Get PDF
    Highlighting the shared evolutionary relationships between humans and animals — and recognizing that all species, including humans, are unique in their own way — may facilitate caring for and conserving animals by tapping into a human emotion: empathy

    West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster

    Get PDF
    DIB's contribution to this work is from the DOMINOS project, a component of the International Thwaites Glacier Collaboration (ITGC). Support for DIB was provided by the Natural Environment Research Council (NERC: Grant NE/S006605/1). ITGC Contribution No. ITGC:025.Over 40 years ago, the glaciologist John Mercer warned that parts of the West Antarctic Ice Sheet were at risk of collapse due to the CO2 greenhouse effect. Mercer recognised the unique vulnerability of ice sheets resting on beds far below sea level (marine-based ice sheets), where an initial warming signal can initiate irreversible retreat. In this paper, we review recent work on evidence for ice sheet collapse in warmer periods of the recent geological past, the current behaviour of the ice sheet, and computer models used to predict future ice-sheet response to global warming. Much of this work points in the same direction: warming climates can indeed trigger collapse of marine-based portions of the West Antarctic Ice Sheet, and retreat in response to recent warming has brought parts of the ice sheet to the threshold of instability. Further retreat appears to be inevitable, but the rate of collapse depends critically on future emissions.Publisher PDFPeer reviewe
    • …
    corecore