94 research outputs found
Colligative properties of solutions: II. Vanishing concentrations
We continue our study of colligative properties of solutions initiated in
math-ph/0407034. We focus on the situations where, in a system of linear size
, the concentration and the chemical potential scale like and
, respectively. We find that there exists a critical value \xit such
that no phase separation occurs for \xi\le\xit while, for \xi>\xit, the two
phases of the solvent coexist for an interval of values of . Moreover, phase
separation begins abruptly in the sense that a macroscopic fraction of the
system suddenly freezes (or melts) forming a crystal (or droplet) of the
complementary phase when reaches a critical value. For certain values of
system parameters, under ``frozen'' boundary conditions, phase separation also
ends abruptly in the sense that the equilibrium droplet grows continuously with
increasing and then suddenly jumps in size to subsume the entire system.
Our findings indicate that the onset of freezing-point depression is in fact a
surface phenomenon.Comment: 27 pages, 1 fig; see also math-ph/0407034 (both to appear in JSP
Metastability and Nucleation for the Blume-Capel Model. Different mechanisms of transition
We study metastability and nucleation for the Blume-Capel model: a
ferromagnetic nearest neighbour two-dimensional lattice system with spin
variables taking values in -1,0,+1. We consider large but finite volume, small
fixed magnetic field h and chemical potential "lambda" in the limit of zero
temperature; we analyze the first excursion from the metastable -1
configuration to the stable +1 configuration. We compute the asymptotic
behaviour of the transition time and describe the typical tube of trajectories
during the transition. We show that, unexpectedly, the mechanism of transition
changes abruptly when the line h=2*lambda is crossed.Comment: 96 pages, 44 tex-figures, 7 postscript figure
Critical droplets in Metastable States of Probabilistic Cellular Automata
We consider the problem of metastability in a probabilistic cellular
automaton (PCA) with a parallel updating rule which is reversible with respect
to a Gibbs measure. The dynamical rules contain two parameters and
which resemble, but are not identical to, the inverse temperature and external
magnetic field in a ferromagnetic Ising model; in particular, the phase diagram
of the system has two stable phases when is large enough and is
zero, and a unique phase when is nonzero. When the system evolves, at small
positive values of , from an initial state with all spins down, the PCA
dynamics give rise to a transition from a metastable to a stable phase when a
droplet of the favored phase inside the metastable phase reaches a
critical size. We give heuristic arguments to estimate the critical size in the
limit of zero ``temperature'' (), as well as estimates of the
time required for the formation of such a droplet in a finite system. Monte
Carlo simulations give results in good agreement with the theoretical
predictions.Comment: 5 LaTeX picture
Finite-size effects for anisotropic bootstrap percolation: logarithmic corrections
In this note we analyze an anisotropic, two-dimensional bootstrap percolation
model introduced by Gravner and Griffeath. We present upper and lower bounds on
the finite-size effects. We discuss the similarities with the semi-oriented
model introduced by Duarte.Comment: Key words: Bootstrap percolation, anisotropy, finite-size effect
Scaling Limit and Critical Exponents for Two-Dimensional Bootstrap Percolation
Consider a cellular automaton with state space
where the initial configuration is chosen according to a Bernoulli
product measure, 1's are stable, and 0's become 1's if they are surrounded by
at least three neighboring 1's. In this paper we show that the configuration
at time n converges exponentially fast to a final configuration
, and that the limiting measure corresponding to is in
the universality class of Bernoulli (independent) percolation.
More precisely, assuming the existence of the critical exponents ,
, and , and of the continuum scaling limit of crossing
probabilities for independent site percolation on the close-packed version of
(i.e., for independent -percolation on ), we
prove that the bootstrapped percolation model has the same scaling limit and
critical exponents.
This type of bootstrap percolation can be seen as a paradigm for a class of
cellular automata whose evolution is given, at each time step, by a monotonic
and nonessential enhancement.Comment: 15 page
Relaxation times of kinetically constrained spin models with glassy dynamics
We analyze the density and size dependence of the relaxation time for
kinetically constrained spin systems. These have been proposed as models for
strong or fragile glasses and for systems undergoing jamming transitions. For
the one (FA1f) or two (FA2f) spin facilitated Fredrickson-Andersen model at any
density and for the Knight model below the critical density at which
the glass transition occurs, we show that the persistence and the spin-spin
time auto-correlation functions decay exponentially. This excludes the
stretched exponential relaxation which was derived by numerical simulations.
For FA2f in , we also prove a super-Arrhenius scaling of the form
. For FA1f in = we
rigorously prove the power law scalings recently derived in \cite{JMS} while in
we obtain upper and lower bounds consistent with findings therein.
Our results are based on a novel multi-scale approach which allows to analyze
in presence of kinetic constraints and to connect time-scales and
dynamical heterogeneities. The techniques are flexible enough to allow a
variety of constraints and can also be applied to conservative stochastic
lattice gases in presence of kinetic constraints.Comment: 4 page
The Alexander-Orbach conjecture holds in high dimensions
We examine the incipient infinite cluster (IIC) of critical percolation in
regimes where mean-field behavior has been established, namely when the
dimension d is large enough or when d>6 and the lattice is sufficiently spread
out. We find that random walk on the IIC exhibits anomalous diffusion with the
spectral dimension d_s=4/3, that is, p_t(x,x)= t^{-2/3+o(1)}. This establishes
a conjecture of Alexander and Orbach. En route we calculate the one-arm
exponent with respect to the intrinsic distance.Comment: 25 pages, 2 figures. To appear in Inventiones Mathematica
Tunneling and Metastability of continuous time Markov chains
We propose a new definition of metastability of Markov processes on countable
state spaces. We obtain sufficient conditions for a sequence of processes to be
metastable. In the reversible case these conditions are expressed in terms of
the capacity and of the stationary measure of the metastable states
One-sided versus two-sided stochastic descriptions
It is well-known that discrete-time finite-state Markov Chains, which are
described by one-sided conditional probabilities which describe a dependence on
the past as only dependent on the present, can also be described as
one-dimensional Markov Fields, that is, nearest-neighbour Gibbs measures for
finite-spin models, which are described by two-sided conditional probabilities.
In such Markov Fields the time interpretation of past and future is being
replaced by the space interpretation of an interior volume, surrounded by an
exterior to the left and to the right.
If we relax the Markov requirement to weak dependence, that is, continuous
dependence, either on the past (generalising the Markov-Chain description) or
on the external configuration (generalising the Markov-Field description), it
turns out this equivalence breaks down, and neither class contains the other.
In one direction this result has been known for a few years, in the opposite
direction a counterexample was found recently. Our counterexample is based on
the phenomenon of entropic repulsion in long-range Ising (or "Dyson") models.Comment: 13 pages, Contribution for "Statistical Mechanics of Classical and
Disordered Systems
Abrupt Convergence and Escape Behavior for Birth and Death Chains
We link two phenomena concerning the asymptotical behavior of stochastic
processes: (i) abrupt convergence or cut-off phenomenon, and (ii) the escape
behavior usually associated to exit from metastability. The former is
characterized by convergence at asymptotically deterministic times, while the
convergence times for the latter are exponentially distributed. We compare and
study both phenomena for discrete-time birth-and-death chains on Z with drift
towards zero. In particular, this includes energy-driven evolutions with energy
functions in the form of a single well. Under suitable drift hypotheses, we
show that there is both an abrupt convergence towards zero and escape behavior
in the other direction. Furthermore, as the evolutions are reversible, the law
of the final escape trajectory coincides with the time reverse of the law of
cut-off paths. Thus, for evolutions defined by one-dimensional energy wells
with sufficiently steep walls, cut-off and escape behavior are related by time
inversion.Comment: 2 figure
- …