93 research outputs found

    Perivascular epitheloid cell tumour (PEComa) of the retroperitoneum – a rare tumor with uncertain malignant behaviour: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Perivascular epitheloid cell tumours are rare mesenchymal neoplasms characterized by a proliferation of perivascular cells with an epitheloid phenotype and expression of myomelanocytic markers.</p> <p>Case presentation</p> <p>Here we present the case of a cystic perivascular epitheloid cell tumour of the retroperitoneum associated with multifocal lung lesions. A 27-year-old woman underwent laparotomy to remove a 10 Γ— 6 Γ— 4 cm sized retroperitoneal mass. The resected specimen was subjected to frozen and permanent histological sections with conventional and immunohistochemical stains, including antibodies against HMB45. The tumour displayed the typical morphological and immunohistochemical features of a perivascular epitheloid cell tumour. Focal necrosis and a proliferative index of 10% suggested a malignant potential. Moreover, postoperative computed tomography scans demonstrated multiple lung lesions, which were radiologically interpreted as being most likely compatible with lymphangioleiomyomatosis.</p> <p>Conclusion</p> <p>Since lymphangioleiomyomatosis, an otherwise benign condition, belongs to the family of perivascular epitheloid cell tumours, it cannot be excluded that the lung lesions in this case in fact represent metastases from the retroperitoneal perivascular epitheloid cell tumour rather than independent neoplasms. More experience with this new and unusual tumour entity is clearly needed in order to define reliable criteria for benign or malignant behaviour.</p

    Brn2 Is a Transcription Factor Regulating Keratinocyte Differentiation with a Possible Role in the Pathogenesis of Lichen Planus

    Get PDF
    Terminal differentiation of skin keratinocytes is a vertically directed multi-step process that is tightly controlled by the sequential expression of a variety of genes. In this study, we investigated the role of the POU domain-containing transcription factor Brn2 in keratinocyte differentiation. Immunohistochemical analysis showed that Brn2 is expressed primarily in the upper granular layer. Consistent with its epidermal localization, Brn2 expression was highly induced at 14 days after calcium treatment of cultured normal human epidermal keratinocytes. When Brn2 was overexpressed by adenoviral transduction, Brn2 led to increased expression of the differentiation-related genes involucrin, filaggrin, and loricrin in addition to inhibition of their proliferation. Chromatin immunoprecipitation demonstrated that Brn2 bound to the promoter regions of these differentiation-related genes. We injected the purified Brn2 adenovirus into rat skin, which led to a thickened epidermis with increased amounts of differentiation related markers. The histopathologic features of adenovirus-Brn2 injected skin tissues looked similar to the features of lichen planus, a human skin disease showing chronic inflammation and well-differentiated epidermal changes. Moreover, Brn2 is shown to be expressed in almost all cell nuclei of the thickened epidermis of lichen planus, and Brn2 also attracts T lymphocytes. Our results demonstrate that Brn2 is probably a transcriptional factor playing an important role in keratinocyte differentiation and probably also in the pathogenesis of lichen planus lesions

    Estrogen Receptor Ξ²-Selective Agonists Stimulate Calcium Oscillations in Human and Mouse Embryonic Stem Cell-Derived Neurons

    Get PDF
    Estrogens are used extensively to treat hot flashes in menopausal women. Some of the beneficial effects of estrogens in hormone therapy on the brain might be due to nongenomic effects in neurons such as the rapid stimulation of calcium oscillations. Most studies have examined the nongenomic effects of estrogen receptors (ER) in primary neurons or brain slices from the rodent brain. However, these cells can not be maintained continuously in culture because neurons are post-mitotic. Neurons derived from embryonic stem cells could be a potential continuous, cell-based model to study nongenomic actions of estrogens in neurons if they are responsive to estrogens after differentiation. In this study ER-subtype specific estrogens were used to examine the role of ERΞ± and ERΞ² on calcium oscillations in neurons derived from human (hES) and mouse embryonic stem cells. Unlike the undifferentiated hES cells the differentiated cells expressed neuronal markers, ERΞ², but not ERΞ±. The non-selective ER agonist 17Ξ²-estradiol (E2) rapidly increased [Ca2+]i oscillations and synchronizations within a few minutes. No change in calcium oscillations was observed with the selective ERΞ± agonist 4,4β€²,4β€³-(4-Propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT). In contrast, the selective ERΞ² agonists, 2,3-bis(4-Hydroxyphenyl)-propionitrile (DPN), MF101, and 2-(3-fluoro-4-hydroxyphenyl)-7-vinyl-1,3 benzoxazol-5-ol (ERB-041; WAY-202041) stimulated calcium oscillations similar to E2. The ERΞ² agonists also increased calcium oscillations and phosphorylated PKC, AKT and ERK1/2 in neurons derived from mouse ES cells, which was inhibited by nifedipine demonstrating that ERΞ² activates L-type voltage gated calcium channels to regulate neuronal activity. Our results demonstrate that ERΞ² signaling regulates nongenomic pathways in neurons derived from ES cells, and suggest that these cells might be useful to study the nongenomic mechanisms of estrogenic compounds

    Mapping Peptidergic Cells in Drosophila: Where DIMM Fits In

    Get PDF
    The bHLH transcription factor DIMMED has been associated with the differentiation of peptidergic cells in Drosophila. However, whether all Drosophila peptidergic cells express DIMM, and the extent to which all DIMM cells are peptidergic, have not been determined. To address these issues, we have mapped DIMM expression in the central nervous system (CNS) and periphery in the late larval stage Drosophila. At 100 hr after egg-laying, DIMM immunosignals are largely congruent with a dimm-promoter reporter (c929-GAL4) and they present a stereotyped pattern of 306 CNS cells and 52 peripheral cells. We assigned positional values for all DIMM CNS cells with respect to reference gene expression patterns, or to patterns of secondary neuroblast lineages. We could assign provisional peptide identities to 68% of DIMM-expressing CNS cells (207/306) and to 73% of DIMM-expressing peripheral cells (38/52) using a panel of 24 markers for Drosophila neuropeptide genes. Furthermore, we found that DIMM co-expression was a prevalent feature within single neuropeptide marker expression patterns. Of the 24 CNS neuropeptide gene patterns we studied, six patterns are >90% DIMM-positive, while 16 of 22 patterns are >40% DIMM-positive. Thus most or all DIMM cells in Drosophila appear to be peptidergic, and many but not all peptidergic cells express DIMM. The co-incidence of DIMM-expression among peptidergic cells is best explained by a hypothesis that DIMM promotes a specific neurosecretory phenotype we term LEAP. LEAP denotes Large cells that display Episodic release of Amidated Peptides
    • …
    corecore