1,494 research outputs found

    The disk around the brown dwarf KPNO Tau 3

    Get PDF
    We present submillimeter observations of the young brown dwarfs KPNO Tau 1, KPNO Tau 3, and KPNO Tau 6 at 450 micron and 850 micron taken with the Submillimeter Common-User Bolometer Array on the James Clerke Maxwell Telescope. KPNO Tau 3 and KPNO Tau 6 have been previously identified as Class II objects hosting accretion disks, whereas KPNO Tau 1 has been identified as a Class III object and shows no evidence of circumsubstellar material. Our 3 sigma detection of cold dust around KPNO Tau 3 implies a total disk mass of (4.0 +/- 1.1) x 10^{-4} Msolar (assuming a gas to dust ratio of 100:1). We place tight constraints on any disks around KPNO Tau 1 or KPNO Tau 6 of <2.1 x 10^{-4} Msolar and <2.7 x 10^{-4} Msolar, respectively. Modeling the spectral energy distribution of KPNO Tau 3 and its disk suggests the disk properties (geometry, dust mass, and grain size distribution) are consistent with observations of other brown dwarf disks and low-mass T-Tauri stars. In particular, the disk-to-host mass ratio for KPNO Tau 3 is congruent with the scenario that at least some brown dwarfs form via the same mechanism as low-mass stars.Comment: 18 pages (preprint format), 3 figures, published in Ap

    Spatial and temporal trends of iron and iron isotope cycling in the Peruvian oxygen minimum zone

    Get PDF
    Iron (Fe) is a key element in the global ocean’s biogeochemical framework because of its essential role in numerous biological processes. A poorly studied link in the oceanic Fe cycle is the reductive release of Fe from sediments in oxygen depleted ocean regions - the oxygen minimum zones (OMZs). Changing rates of Fe release from OMZ sediments may have the potential to modulate ocean fertility which has far-reaching implications considering the high amplitude oxygen fluctuations throughout earth history as well as the ongoing ocean deoxygenation projected for the near future. In order to explore spatial and temporal trends of Fe cycling in OMZs, we present here Fe isotope and speciation data for surface sediments from a transect across the Peruvian upwelling area, one of the most pronounced OMZs of the modern ocean. Because of continuous dissimilatory Fe reduction and diffusive loss across the benthic boundary, sediments within the OMZ are strongly depleted in reactive Fe components, and the little reactive Fe left behind has a heavy isotope composition. In contrast, surface sediments below the OMZ are enriched in reactive Fe, with the majority being present as Fe oxides with comparably light isotope composition. This lateral pattern of Fe depletion and enrichment indicates that Fe released from sediments within the OMZ is reoxidized and precipitated at the oxycline. First-order calculations suggest that the amount of Fe mobilized within the OMZ and that accumulated at the boundaries are largely balanced. Therefore, benthic Fe fluxes in OMZs should be carefully evaluated prior to incorporation into global models, as much of the initially released Fe may be reprecipitated prior to vertical or offshore transport. First XRF core scanning results for partly laminated piston cores from the OMZ boundaries reveal downcore oscillations in the content of reactive Fe and redox-sensitive trace metals that are attributed to past changes in OMZ extension. Ongoing work on these cores will focus on their dating and the downcore investigation of Fe and trace metal records in order to better understand past Fe cycling within the Peruvian OMZ and potential interactions with climate variability

    NOON states from cavity-enhanced down-conversion: High quality and super-resolution

    Full text link
    Indistinguishable photons play a key role in quantum optical information technologies. We characterize the output of an ultra-bright photon-pair source using multi-particle tomography [R. B. A. Adamson et al., Phys. Rev. Lett. 98, 043601 (2007)] and separately identify coherent errors, decoherence, and distinguishability. We demonstrate generation of high-quality indistinguishable pairs and polarization NOON states with 99% fidelity to an ideal NOON state. Using a NOON state we perform a super-resolving angular measurement with 90% visibility.Comment: 4 Pages, 5 figure

    Rogue planets and brown dwarfs : predicting the populations free-floating planetary mass objects observable with JWST

    Get PDF
    K.M. acknowledges funding by the Science and Technology Foundation of Portugal (FCT), grants No. PTDC/FIS-AST/28731/2017 and UIDB/00099/2020. L.Q. contributed to this paper as part of a summer research project, for which funding was kindly provided by Rita Tojeiro and Vivienne Wild.Free-floating (or rogue) planets are planets that are liberated (or ejected) from their host systems. Although simulations predict their existence in substantial numbers, direct observational evidence for free-floating planets with masses below ∼5 M Jup is still lacking. Several cycle-1 observing programs with JWST aim to hunt for them in four different star-forming clusters. These surveys are designed to be sensitive to masses of 1–15 M Jup (assuming a hot-start formation), which corresponds to spectral types of early L to late T for the ages of these clusters. If the existing simulations are not wide off the mark, we show here that the planned programs are likely to find up to 10–20 giant rogue planets in moderate density clusters like NGC1333 or IC348, and several dozen to ∼100 in high-density regions like NGC2024 and the Orion Nebula Cluster. These numbers correspond to 1%–5% of the total cluster population; they could be substantially higher if stars form multiple giant planets at birth. In contrast, the number of free-floating brown dwarfs, formed from core collapse (like stars) is expected to be significantly lower, only about 0.25% of the number of stars, or 1–7 for the clusters considered here. Below 10 M Jup that number drops further by an order of magnitude. We also show that the planned surveys are not at risk of being significantly contaminated by field brown dwarfs in the foreground or background, after spectroscopic confirmation. Taken together, our results imply that if a population of L and T dwarfs were to be found in these JWST surveys, it is expected to be predominantly made up of rogue planets.Publisher PDFPeer reviewe

    Isomerisation of an intramolecular hydrogen-bonded photoswitch:Protonated azobis(2-imidazole)

    Get PDF
    Photoisomerisation of protonated azobis(2-imidazole), an intramolecular hydrogen-bonded azoheteroarene photoswitch molecule, is investigated in the gas phase using tandem ion mobility mass spectrometry. The E and Z isomers exhibit distinct spectral responses, with E-Z photoisomerisation occurring over the 360-520 nm range (peak at 460 nm), and Z-E photoisomerisation taking place over the 320-420 nm range (peak at 390 nm). A minor photodissociation channel involving loss of N2 is observed for the E-isomer with a maximum efficiency at 390 nm, blue-shifted by ≈70 nm relative to the wavelength for maximum photoisomerisation response. Loss of N2 is also the predominant collision-induced dissociation channel. Electronic structure calculations suggest that E-isomer photoisomerisation involves S1(ππ∗) excitation, whereas the Z-isomer photoisomerisation involves S2(ππ∗) excitation. Conversion between the E and Z isomers through collisional excitation, which is calculated to occur through both inversion and torsion pathways, is investigated experimentally by colliding the molecular ions with nitrogen buffer gas over a range of electric fields. This study demonstrates the versatility of tandem ion mobility mass spectrometry for exploring the isomerisation of molecular photoswitches initiated by either light or collisions

    Sim2Real for Environmental Neural Processes

    Full text link
    Machine learning (ML)-based weather models have recently undergone rapid improvements. These models are typically trained on gridded reanalysis data from numerical data assimilation systems. However, reanalysis data comes with limitations, such as assumptions about physical laws and low spatiotemporal resolution. The gap between reanalysis and reality has sparked growing interest in training ML models directly on observations such as weather stations. Modelling scattered and sparse environmental observations requires scalable and flexible ML architectures, one of which is the convolutional conditional neural process (ConvCNP). ConvCNPs can learn to condition on both gridded and off-the-grid context data to make uncertainty-aware predictions at target locations. However, the sparsity of real observations presents a challenge for data-hungry deep learning models like the ConvCNP. One potential solution is 'Sim2Real': pre-training on reanalysis and fine-tuning on observational data. We analyse Sim2Real with a ConvCNP trained to interpolate surface air temperature over Germany, using varying numbers of weather stations for fine-tuning. On held-out weather stations, Sim2Real training substantially outperforms the same model architecture trained only with reanalysis data or only with station data, showing that reanalysis data can serve as a stepping stone for learning from real observations. Sim2Real could thus enable more accurate models for weather prediction and climate monitoring.Comment: 4 pages, 3 figures, To be published in Tackling Climate Change with Machine Learning workshop at NeurIP

    Photoinitiated Intramolecular Proton Transfer in Deprotonated para-Coumaric Acid

    Get PDF
    Deprotonated para-coumaric acid is commonly considered as a model for the chromophore in photoactive yellow protein, which undergoes E → Z isomerization following absorption of blue light. Here, tandem ion mobility mass spectrometry is coupled with laser excitation to study the photochemistry of deprotonated para-coumaric acid, to show that the E isomers of the phenoxide and carboxylate forms have distinct photochemical responses with maxima in their action spectra at 430 and 360 nm, respectively. The E isomer of the phenoxide anion undergoes efficient autodetachment upon excitation of its lowest ππ* transition. For the E isomer of the carboxylate deprotomer, a one-way photoinitiated proton transfer generates the phenoxide deprotomer through a mechanism postulated to involve an excited-state enol–keto tautomerism followed by a series of ground-state rearrangements including a second proton transfer. This mechanism is supported by experiments in which the relevant intermediate keto isomer is prepared and spectroscopically probed and through master equation modeling of possible ground-state isomerization processes. The Z isomer of the carboxylate deprotomer shows a weak Z → E photoisomerization response that occurs in competition with photodestruction (presumably electron detachment), demonstrating that the E and Z isomers undergo different processes in their excited states. The study highlights the utility of isomer-selective spectroscopy for characterizing the photochemistry of isolated anions possessing multiple deprotonation sites

    Distinct conformational stability and functional activity of four highly homologous endonuclease colicins

    Get PDF
    The family of conserved colicin DNases E2, E7, E8, and E9 are microbial toxins that kill bacteria through random degradation of the chromosomal DNA. In the present work, we compare side by side the conformational stabilities of these four highly homologous colicin DNases. Our results indicate that the apo-forms of these colicins are at room temperature and neutral pH in a dynamic conformational equilibrium between at least two quite distinct conformers. We show that the thermal stabilities of the apo-proteins differ by up to 20degreesC. The observed differences correlate with the observed conformational behavior, that is, the tendency of the protein to form either an open, less stable or closed, more stable conformation in solution, as deduced by both tryptophan accessibility studies and electrospray ionization mass spectrometry. Given these surprising structural differences, we next probed the catalytic activity of the four DNases and also observed a significant variation in relative activities. However, no unequivocal link between the activity of the protein and its thermal and structural stability could easily be made. The observed differences in conformational and functional properties of the four colicin DNases are surprising given that they are a closely related ( greater than or equal to65% identity) family of enzymes containing a highly conserved (betabetaalpha-Me) active site motif. The different behavior of the apo-enzymes must therefore most likely depend on more subtle changes in amino acid sequences, most likely in the exosite region (residues 72-98) that is required for specific high-affinity binding of the cognate immunity protein

    Reversible photoswitching of isolated ionic hemiindigos with visible light

    Get PDF
    Indigoid chromophores have emerged as versatile molecular photoswitches, offering efficient reversible photoisomerization upon exposure to visible light. Here we report synthesis of a new class of permanently charged hemiindigos (HIs) and characterization of photochemical properties in gas phase and solution. Gas-phase studies, which involve exposing mobility-selected ions in a tandem ion mobility mass spectrometer to tunable wavelength laser radiation, demonstrate that the isolated HI ions are photochromic and can be reversibly photoswitched between Z and E isomers. The Z and E isomers have distinct photoisomerization response spectra with maxima separated by 40–80 nm, consistent with theoretical predictions for their absorption spectra. Solvation of the HI molecules in acetonitrile displaces the absorption bands to lower energy. Together, gas-phase action spectroscopy and solution NMR and UV/Vis absorption spectroscopy represent a powerful approach for studying the intrinsic photochemical properties of HI molecular switches
    • …
    corecore