232 research outputs found
Fracture of disordered solids in compression as a critical phenomenon: III. Analysis of the localization transition
The properties of the Hamiltonian developed in Paper II are studied showing
that at a particular strain level a ``localization'' phase transition occurs
characterized by the emergence of conjugate bands of coherently oriented
cracks. The functional integration that yields the partition function is then
performed analytically using an approximation that employs only a subset of
states in the functional neighborhood surrounding the most probable states.
Such integration establishes the free energy of the system, and upon taking the
derivatives of the free energy, the localization transition is shown to be
continuous and to be distinct from peak stress. When the bulk modulus of the
grain material is large, localization always occurs in the softening regime
following peak stress, while for sufficiently small bulk moduli and at
sufficiently low confining pressure, the localization occurs in the hardening
regime prior to peak stress.
In the approach to localization, the stress-strain relation for the whole
rock remains analytic, as is observed both in experimental data and in simpler
models.
The correlation function of the crack fields is also obtained. It has a
correlation length characterizing the aspect ratio of the crack clusters that
diverges as (\xi \sim (\ep_{c}-\ep)^{-2}) at localization.Comment: 11 pages, 3 figure
Rheology of a confined granular material
We study the rheology of a granular material slowly driven in a confined
geometry. The motion is characterized by a steady sliding with a resistance
force increasing with the driving velocity and the surrounding relative
humidity. For lower driving velocities a transition to stick-slip motion
occurs, exhibiting a blocking enhancement whith decreasing velocity. We propose
a model to explain this behavior pointing out the leading role of friction
properties between the grains and the container's boundary.Comment: 9 pages, 3 .eps figures, submitted to PR
On the Propagation of Slip Fronts at Frictional Interfaces
The dynamic initiation of sliding at planar interfaces between deformable and
rigid solids is studied with particular focus on the speed of the slip front.
Recent experimental results showed a close relation between this speed and the
local ratio of shear to normal stress measured before slip occurs (static
stress ratio). Using a two-dimensional finite element model, we demonstrate,
however, that fronts propagating in different directions do not have the same
dynamics under similar stress conditions. A lack of correlation is also
observed between accelerating and decelerating slip fronts. These effects
cannot be entirely associated with static local stresses but call for a dynamic
description. Considering a dynamic stress ratio (measured in front of the slip
tip) instead of a static one reduces the above-mentioned inconsistencies.
However, the effects of the direction and acceleration are still present. To
overcome this we propose an energetic criterion that uniquely associates,
independently on the direction of propagation and its acceleration, the slip
front velocity with the relative rise of the energy density at the slip tip.Comment: 15 pages, 6 figure
Mechanisms for slow strengthening in granular materials
Several mechanisms cause a granular material to strengthen over time at low
applied stress. The strength is determined from the maximum frictional force
F_max experienced by a shearing plate in contact with wet or dry granular
material after the layer has been at rest for a waiting time \tau. The layer
strength increases roughly logarithmically with \tau -only- if a shear stress
is applied during the waiting time. The mechanisms of strengthening are
investigated by sensitive displacement measurements and by imaging of particle
motion in the shear zone. Granular matter can strengthen due to a slow shift in
the particle arrangement under shear stress. Humidity also leads to
strengthening, but is found not to be its sole cause. In addition to these time
dependent effects, the static friction coefficient can also be increased by
compaction of the granular material under some circumstances, and by cycling of
the applied shear stress.Comment: 21 pages, 11 figures, submitted to Phys. Rev.
Magnetization dynamics with a spin-transfer torque
The magnetization reversal and dynamics of a spin valve pillar, whose lateral
size is 6464 nm, are studied by using micromagnetic simulation in
the presence of spin transfer torque. Spin torques display both characteristics
of magnetic damping (or anti-damping) and of an effective magnetic field. For a
steady-state current, both M-I and M-H hysteresis loops show unique features,
including multiple jumps, unusual plateaus and precessional states. These
states originate from the competition between the energy dissipation due to
Gilbert damping and the energy accumulation due to the spin torque supplied by
the spin current. The magnetic energy oscillates as a function of time even for
a steady-state current. For a pulsed current, the minimum width and amplitude
of the spin torque for achieving current-driven magnetization reversal are
quantitatively determined. The spin torque also shows very interesting thermal
activation that is fundamentally different from an ordinary damping effect.Comment: 15 figure
Aperiodicity in one-way Markov cycles and repeat times of large earthquakes in faults
A common use of Markov Chains is the simulation of the seismic cycle in a
fault, i.e. as a renewal model for the repetition of its characteristic
earthquakes. This representation is consistent with Reid's elastic rebound
theory. Here it is proved that in {\it any} one-way Markov cycle, the
aperiodicity of the corresponding distribution of cycle lengths is always lower
than one. This fact concurs with observations of large earthquakes in faults
all over the world
Dynamics of earthquake nucleation process represented by the Burridge-Knopoff model
Dynamics of earthquake nucleation process is studied on the basis of the
one-dimensional Burridge-Knopoff (BK) model obeying the rate- and
state-dependent friction (RSF) law. We investigate the properties of the model
at each stage of the nucleation process, including the quasi-static initial
phase, the unstable acceleration phase and the high-speed rupture phase or a
mainshock. Two kinds of nucleation lengths L_sc and L_c are identified and
investigated. The nucleation length L_sc and the initial phase exist only for a
weak frictional instability regime, while the nucleation length L_c and the
acceleration phase exist for both weak and strong instability regimes. Both
L_sc and L_c are found to be determined by the model parameters, the frictional
weakening parameter and the elastic stiffness parameter, hardly dependent on
the size of an ensuing mainshock. The sliding velocity is extremely slow in the
initial phase up to L_sc, of order the pulling speed of the plate, while it
reaches a detectable level at a certain stage of the acceleration phase. The
continuum limits of the results are discussed. The continuum limit of the BK
model lies in the weak frictional instability regime so that a mature
homogeneous fault under the RSF law always accompanies the quasi-static
nucleation process. Duration times of each stage of the nucleation process are
examined. The relation to the elastic continuum model and implications to real
seismicity are discussed.Comment: Title changed. Changes mainly in abstract and in section 1. To appear
in European Physical Journal
Sub- and above barrier fusion of loosely bound Li with Si
Fusion excitation functions are measured for the system Li+Si
using the characteristic -ray method, encompassing both the sub-barrier
and above barrier regions, viz., = 7-24 MeV. Two separate experiments
were performed, one for the above barrier region (= 11-24 MeV) and
another for the below barrier region (= 7-10 MeV). The results were
compared with our previously measured fusion cross section for the
Li+Si system. We observed enhancement of fusion cross section at
sub-barrier regions for both Li and Li, but yield was substantially
larger for Li. However, for well above barrier regions, similar type of
suppression was identified for both the systems.Comment: 8 pages, 6 figures, as accepted for publication in Eur.Phys.J.
Extreme events and predictability of catastrophic failure in composite materials and in the Earth
Despite all attempts to isolate and predict extreme earthquakes, these nearly always occur without obvious warning in real time: fully deterministic earthquake prediction is very much a âblack swanâ. On the other hand engineering-scale samples of rocks and other composite materials often show clear precursors to dynamic failure under controlled conditions in the laboratory, and successful evacuations have occurred before several volcanic eruptions. This may be because extreme earthquakes are not statistically special, being an emergent property of the process of dynamic rupture. Nevertheless, probabilistic forecasting of event rate above a given size, based on the tendency of earthquakes to cluster in space and time, can have significant skill compared to say random failure, even in real-time mode. We address several questions in this debate, using examples from the Earth (earthquakes, volcanoes) and the laboratory, including the following. How can we identify âcharacteristicâ events, i.e. beyond the power law, in model selection (do dragon-kings exist)? How do we discriminate quantitatively between stationary and non-stationary hazard models (is a dragon likely to come soon)? Does the system size (the size of the dragonâs domain) matter? Are there localising signals of imminent catastrophic failure we may not be able to access (is the dragon effectively invisible on approach)? We focus on the effect of sampling effects and statistical uncertainty in the identification of extreme events and their predictability, and highlight the strong influence of scaling in space and time as an outstanding issue to be addressed by quantitative studies, experimentation and models
- âŠ