26 research outputs found

    Modulation des menschlichen Ganges bei gesunden Kontrollen und Morbus Parkinson

    Get PDF

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Evaluation of an adaptive detector collimation for prospectively ECG-triggered coronary CT angiography with third-generation dual-source CT

    Full text link
    OBJECTIVES: To investigate the impact of an adaptive detector collimation on the dose parameters and accurateness of scan length adaption at prospectively ECG-triggered sequential cardiac CT with a wide-detector third-generation dual-source CT. METHODS: Ideal scan lengths for human hearts were retrospectively derived from 103 triple-rule-out examinations. These measures were entered into the new scanner operated in prospectively ECG-triggered sequential cardiac scan mode with three different detector settings: (1) adaptive collimation, (2) fixed 64 × 0.6-mm collimation, and (3) fixed 96 × 0.6-mm collimation. Differences in effective scan length and deviation from the ideal scan length and dose parameters (CTDIvol, DLP) were documented. RESULTS: The ideal cardiac scan length could be matched by the adaptive collimation in every case while the mean scanned length was longer by 15.4% with the 64 × 0.6 mm and by 27.2% with the fixed 96 × 0.6-mm collimation. While the DLP was almost identical between the adaptive and the 64 × 0.6-mm collimation (83 vs. 89 mGycm at 120 kV), it was 62.7% higher with the 96 × 0.6-mm collimation (135 mGycm), p < 0.001. CONCLUSION: The adaptive detector collimation for prospectively ECG-triggered sequential acquisition allows for adjusting the scan length as accurate as this can only be achieved with a spiral acquisition. This technique allows keeping patient exposure low where patient dose would significantly increase with the traditional step-and-shoot mode. KEY POINTS: • Adaptive detector collimation allows keeping patient exposure low in cardiac CT. • With novel detectors the desired scan length can be accurately matched. • Differences in detector settings may cause 62.7% of excessive dose

    Lipiodol as a Predictive Indicator for Therapy Response to Transarterial Chemoembolization of Hepatocellular Carcinoma

    No full text
    Background: To evaluate the predictive value of Lipiodol for response evaluation of hepatocellular carcinoma (HCC) treated with conventional transarterial chemoembolization (cTACE) by analysis of the enhancement pattern during angiography and in postinterventional computed tomography (CT). Materials and Methods: This retrospective study included 30 patients (mean age 63 years, range: 36 to 82 years, 22 males) with HCC. Patients received three Lipiodol-based cTACE sessions, each followed by an unenhanced CT within 24-h. Contrast-enhanced magnetic resonance imaging (MRI) was acquired before and after the treatment to determine tumor response. Lipiodol enhancement pattern, tumor vascularization, and density were evaluated by angiography and CT. Initial tumor size and response to cTACE were analyzed by MRI according to modified response evaluation criteria in solid tumors (mRECIST) in a 4-week follow-up. Results: Analysis of HCC lesions (68 lesions in 30 patients) during cTACE revealed clear visibility and hypervascularization in angiography as a potential independent parameter able to predict tumor response. A significant correlation was found for response measurements by volume (p = 0.012), diameter (p = 0.006), and according to mRECIST (p = 0.039). The amount of Lipiodol and enhancement pattern in postinterventional CT did not correlate with therapy response. Measurements of Hounsfield unit values after cTACE do not allow sufficient prediction of the tumor response. Conclusion: Hypervascularized HCC lesions with clear visibility after Lipiodol administration in the angiography respond significantly better to cTACE compared to hypo- or nonvascularized lesions

    CT-guided biopsies of unspecified suspect intrahepatic lesions: pre-procedure Lipiodol-marking improves the biopsy success rate

    No full text
    While computed tomography (CT)-guided liver biopsies are commonly performed using unenhanced images, contrast-enhanced images are beneficial for challenging puncture pathways and lesion locations. This study aimed to evaluate the accuracy of CT-guided biopsies for intrahepatic lesions using unenhanced, intravenous (IV)-enhanced, or intra-arterial Lipiodol-marked CT for lesion marking

    Quantitative analysis of in-TIPS thrombosis in abdominal CT

    No full text
    Purpose: To identify transjugular intrahepatic portosystemic shunt (TIPS) thrombosis in abdominal CT scans applying quantitative image analysis. Materials and methods: We retrospectively screened 184 patients to include 20 patients (male, 8; female, 12; mean age, 60.7 ± 8.87 years) with (case, n = 10) and without (control, n = 10) in-TIPS thrombosis who underwent clinically indicated contrast-enhanced and unenhanced abdominal CT followed by conventional TIPS-angiography between 08/2014 and 06/2020. First, images were scored visually. Second, region of interest (ROI) based quantitative measurements of CT attenuation were performed in the inferior vena cava (IVC), portal vein and in four TIPS locations. Minimum, maximum and average Hounsfield unit (HU) values were used as absolute and relative quantitative features. We analyzed the features with univariate testing. Results: Subjective scores identified in-TIPS thrombosis in contrast-enhanced scans with an accuracy of 0.667 – 0.833. Patients with in-TIPS thrombosis had significantly lower average (p < 0.001), minimum (p < 0.001) and maximum HU (p = 0.043) in contrast-enhanced images. The in-TIPS / IVC ratio in contrast-enhanced images was significantly lower in patients with in-TIPS thrombosis (p < 0.001). No significant differences were found for unenhanced images. Analyzing the visually most suspicious ROI with consecutive calculation of its ratio to the IVC, all patients with a ratio < 1 suffered from in-TIPS thrombosis (p < 0.001, sensitivity and specificity = 100%). Conclusion: Quantitative analysis of abdominal CT scans facilitates the stratification of in-TIPS thrombosis. In contrast-enhanced scans, an in-TIPS / IVC ratio < 1 could non-invasively stratify all patients with in-TIPS thrombosis

    Single-source chest-abdomen-pelvis cancer staging on a third generation dual-source CT system: comparison of automated tube potential selection to second generation dual-source CT

    Get PDF
    BACKGROUND: Evaluation of latest generation automated attenuation-based tube potential selection (ATPS) impact on image quality and radiation dose in contrast-enhanced chest-abdomen-pelvis computed tomography examinations for gynaecologic cancer staging. METHODS: This IRB approved single-centre, observer-blinded retrospective study with a waiver for informed consent included a total of 100 patients with contrast-enhanced chest-abdomen-pelvis CT for gynaecologic cancer staging. All patients were examined with activated ATPS for adaption of tube voltage to body habitus. 50 patients were scanned on a third-generation dual-source CT (DSCT), and another 50 patients on a second-generation DSCT. Predefined image quality setting remained stable between both groups at 120 kV and a current of 210 Reference mAs. Subjective image quality assessment was performed by two blinded readers independently. Attenuation and image noise were measured in several anatomic structures. Signal-to-noise ratio (SNR) was calculated. For the evaluation of radiation exposure, CT dose index (CTDIvol) values were compared. RESULTS: Diagnostic image quality was obtained in all patients. The median CTDIvol (6.1 mGy, range 3.9-22 mGy) was 40 % lower when using the algorithm compared with the previous ATCM protocol (median 10.2 mGy · cm, range 5.8-22.8 mGy). A reduction in potential to 90 kV occurred in 19 cases, a reduction to 100 kV in 23 patients and a reduction to 110 kV in 3 patients of our experimental cohort. These patients received significantly lower radiation exposure compared to the former used protocol. CONCLUSION: Latest generation automated ATPS on third-generation DSCT provides good diagnostic image quality in chest-abdomen-pelvis CT while average radiation dose is reduced by 40 % compared to former ATPS protocol on second-generation DSCT

    Density and morphology of coronary artery calcium for the prediction of cardiovascular events:insights from the Framingham Heart Study

    Get PDF
    Objectives To investigate the association between directly measured density and morphology of coronary artery calcium (CAC) with cardiovascular disease (CVD) events, using computed tomography (CT). Methods Framingham Heart Study (FHS) participants with CAC in noncontrast cardiac CT (2002-2005) were included and followed until 2016. Participants with known CVD or uninterpretable CT scans were excluded. We assessed and correlated (Spearman) CAC density, CAC volume, and the number of calcified segments. Moreover, we counted morphology features including shape (cylindrical, spherical, semi-tubular, and spotty), location (bifurcation, facing pericardium, or facing myocardium), and boundary regularity. In multivariate Cox regression analyses, we associated all CAC characteristics with CVD events (CVD-death, myocardial infarction, stroke). Results Among 1330 included participants (57.8 +/- 11.7 years; 63% male), 73 (5.5%) experienced CVD events in a median follow-up of 9.1 (7.8-10.1) years. CAC density correlated strongly with CAC volume (Spearman's rho = 0.75; p <0.001) and lower number of calcified segments (rho = - 0.86; p <0.001; controlled for CAC volume). In the survival analysis, CAC density was associated with CVD events independent of Framingham risk score (HR (per SD) = 2.09; 95%CI, 1.30-3.34; p = 0.002) but not after adjustment for CAC volume (p = 0.648). The extent of spherically shaped and pericardially sided calcifications was associated with fewer CVD events accounting for the number of calcified segments (HR (per count) = 0.55; 95%CI, 0.31-0.98; p = 0.042 and HR = 0.66; 95%CI, 0.45-0.98; p = 0.039, respectively). Conclusions Directly measured CAC density does not predict CVD events due to the strong correlation with CAC volume. The spherical shape and pericardial-sided location of CAC are associated with fewer CVD events and may represent morphological features related to stable coronary plaques

    Imaging biomarkers to stratify lymph node metastases in abdominal CT – Is radiomics superior to dual-energy material decomposition?

    No full text
    Purpose: To assess the potential of radiomic features in comparison to dual-energy CT (DECT) material decomposition to objectively stratify abdominal lymph node metastases. Materials and methods: In this retrospective study, we included 81 patients (m, 57; median age, 65 (interquartile range, 58.7–73.3) years) with either lymph node metastases (n = 36) or benign lymph nodes (n = 45) who underwent contrast-enhanced abdominal DECT between 06/2015–07/2019. All malignant lymph nodes were classified as unequivocal according to RECIST criteria and confirmed by histopathology, PET-CT or follow-up imaging. Three investigators segmented lymph nodes to extract DECT and radiomics features. Intra-class correlation analysis was applied to stratify a robust feature subset with further feature reduction by Pearson correlation analysis and LASSO. Independent training and testing datasets were applied on four different machine learning models. We calculated the performance metrics and permutation-based feature importance values to increase interpretability of the models. DeLong test was used to compare the top performing models. Results: Distance matrices and t-SNE plots revealed clearer clusters using a combination of DECT and radiomic features compared to DECT features only. Feature reduction by LASSO excluded all DECT features of the combined feature cohort. The top performing radiomic features model (AUC = 1.000; F1 = 1.000; precision = 1.000; Random Forest) was significantly superior to the top performing DECT features model (AUC = 0.942; F1 = 0.762; precision = 0.800; Stochastic Gradient Boosting) (DeLong < 0.001). Conclusion: Imaging biomarkers have the potential to stratify unequivocal lymph node metastases. Radiomics models were superior to DECT material decomposition and may serve as a support tool to facilitate stratification of abdominal lymph node metastases
    corecore