5 research outputs found

    A pendulum of induction between the epiblast and extra-embryonic endoderm supports post-implantation progression

    No full text
    Embryogenesis is supported by dynamic loops of cellular interactions. Here, we create a partial mouse embryo model to elucidate the principles of epiblast (Epi) and extra-embryonic endoderm co-development (XEn). We trigger naive mouse embryonic stem cells to form a blastocyst-stage niche of Epi-like cells and XEn-like cells (3D, hydrogel free and serum free). Once established, these two lineages autonomously progress in minimal medium to form an inner pro-amniotic-like cavity surrounded by polarized Epi-like cells covered with visceral endoderm (VE)-like cells. The progression occurs through reciprocal inductions by which the Epi supports the primitive endoderm (PrE) to produce a basal lamina that subsequently regulates Epi polarization and/or cavitation, which, in return, channels the transcriptomic progression to VE. This VE then contributes to Epi bifurcation into anterior- and posterior-like states. Similarly, boosting the formation of PrE-like cells within blastoids supports developmental progression. We argue that self-organization can arise from lineage bifurcation followed by a pendulum of induction that propagates over time

    A pendulum of induction between the epiblast and extra-embryonic endoderm supports post-implantation progression

    No full text
    Embryogenesis is supported by dynamic loops of cellular interactions. Here, we create a partial mouse embryo model to elucidate the principles of epiblast (Epi) and extra-embryonic endoderm co-development (XEn). We trigger naive mouse embryonic stem cells to form a blastocyst-stage niche of Epi-like cells and XEn-like cells (3D, hydrogel free and serum free). Once established, these two lineages autonomously progress in minimal medium to form an inner pro-amniotic-like cavity surrounded by polarized Epi-like cells covered with visceral endoderm (VE)-like cells. The progression occurs through reciprocal inductions by which the Epi supports the primitive endoderm (PrE) to produce a basal lamina that subsequently regulates Epi polarization and/or cavitation, which, in return, channels the transcriptomic progression to VE. This VE then contributes to Epi bifurcation into anterior- and posterior-like states. Similarly, boosting the formation of PrE-like cells within blastoids supports developmental progression. We argue that self-organization can arise from lineage bifurcation followed by a pendulum of induction that propagates over time

    Evaluation of a Fully Automatic Deep Learning-Based Method for the Measurement of Psoas Muscle Area

    No full text
    Background: Manual muscle mass assessment based on Computed Tomography (CT) scans is recognized as a good marker for malnutrition, sarcopenia, and adverse outcomes. However, manual muscle mass analysis is cumbersome and time consuming. An accurate fully automated method is needed. In this study, we evaluate if manual psoas annotation can be substituted by a fully automatic deep learning-based method. Methods: This study included a cohort of 583 patients with severe aortic valve stenosis planned to undergo Transcatheter Aortic Valve Replacement (TAVR). Psoas muscle area was annotated manually on the CT scan at the height of lumbar vertebra 3 (L3). The deep learning-based method mimics this approach by first determining the L3 level and subsequently segmenting the psoas at that level. The fully automatic approach was evaluated as well as segmentation and slice selection, using average bias 95% limits of agreement, Intraclass Correlation Coefficient (ICC) and within-subject Coefficient of Variation (CV). To evaluate performance of the slice selection visual inspection was performed. To evaluate segmentation Dice index was computed between the manual and automatic segmentations (0 = no overlap, 1 = perfect overlap). Results: Included patients had a mean age of 81 ± 6 and 45% was female. The fully automatic method showed a bias and limits of agreement of −0.69 [−6.60 to 5.23] cm2, an ICC of 0.78 [95% CI: 0.74–0.82] and a within-subject CV of 11.2% [95% CI: 10.2–12.2]. For slice selection, 84% of the selections were on the same vertebra between methods, bias and limits of agreement was 3.4 [−24.5 to 31.4] mm. The Dice index for segmentation was 0.93 ± 0.04, bias and limits of agreement was −0.55 [1.71–2.80] cm2. Conclusion: Fully automatic assessment of psoas muscle area demonstrates accurate performance at the L3 level in CT images. It is a reliable tool that offers great opportunities for analysis in large scale studies and in clinical applications

    Evaluation of a Fully Automatic Deep Learning-Based Method for the Measurement of Psoas Muscle Area

    No full text
    Background: Manual muscle mass assessment based on Computed Tomography (CT) scans is recognized as a good marker for malnutrition, sarcopenia, and adverse outcomes. However, manual muscle mass analysis is cumbersome and time consuming. An accurate fully automated method is needed. In this study, we evaluate if manual psoas annotation can be substituted by a fully automatic deep learning-based method. Methods: This study included a cohort of 583 patients with severe aortic valve stenosis planned to undergo Transcatheter Aortic Valve Replacement (TAVR). Psoas muscle area was annotated manually on the CT scan at the height of lumbar vertebra 3 (L3). The deep learning-based method mimics this approach by first determining the L3 level and subsequently segmenting the psoas at that level. The fully automatic approach was evaluated as well as segmentation and slice selection, using average bias 95% limits of agreement, Intraclass Correlation Coefficient (ICC) and within-subject Coefficient of Variation (CV). To evaluate performance of the slice selection visual inspection was performed. To evaluate segmentation Dice index was computed between the manual and automatic segmentations (0 = no overlap, 1 = perfect overlap). Results: Included patients had a mean age of 81 ± 6 and 45% was female. The fully automatic method showed a bias and limits of agreement of -0.69 [-6.60 to 5.23] cm2, an ICC of 0.78 [95% CI: 0.74-0.82] and a within-subject CV of 11.2% [95% CI: 10.2-12.2]. For slice selection, 84% of the selections were on the same vertebra between methods, bias and limits of agreement was 3.4 [-24.5 to 31.4] mm. The Dice index for segmentation was 0.93 ± 0.04, bias and limits of agreement was -0.55 [1.71-2.80] cm2. Conclusion: Fully automatic assessment of psoas muscle area demonstrates accurate performance at the L3 level in CT images. It is a reliable tool that offers great opportunities for analysis in large scale studies and in clinical applications

    Evaluation of a Fully Automatic Deep Learning-Based Method for the Measurement of Psoas Muscle Area

    No full text
    Background: Manual muscle mass assessment based on Computed Tomography (CT) scans is recognized as a good marker for malnutrition, sarcopenia, and adverse outcomes. However, manual muscle mass analysis is cumbersome and time consuming. An accurate fully automated method is needed. In this study, we evaluate if manual psoas annotation can be substituted by a fully automatic deep learning-based method. Methods: This study included a cohort of 583 patients with severe aortic valve stenosis planned to undergo Transcatheter Aortic Valve Replacement (TAVR). Psoas muscle area was annotated manually on the CT scan at the height of lumbar vertebra 3 (L3). The deep learning-based method mimics this approach by first determining the L3 level and subsequently segmenting the psoas at that level. The fully automatic approach was evaluated as well as segmentation and slice selection, using average bias 95% limits of agreement, Intraclass Correlation Coefficient (ICC) and within-subject Coefficient of Variation (CV). To evaluate performance of the slice selection visual inspection was performed. To evaluate segmentation Dice index was computed between the manual and automatic segmentations (0 = no overlap, 1 = perfect overlap). Results: Included patients had a mean age of 81 ± 6 and 45% was female. The fully automatic method showed a bias and limits of agreement of -0.69 [-6.60 to 5.23] cm2, an ICC of 0.78 [95% CI: 0.74-0.82] and a within-subject CV of 11.2% [95% CI: 10.2-12.2]. For slice selection, 84% of the selections were on the same vertebra between methods, bias and limits of agreement was 3.4 [-24.5 to 31.4] mm. The Dice index for segmentation was 0.93 ± 0.04, bias and limits of agreement was -0.55 [1.71-2.80] cm2. Conclusion: Fully automatic assessment of psoas muscle area demonstrates accurate performance at the L3 level in CT images. It is a reliable tool that offers great opportunities for analysis in large scale studies and in clinical applications
    corecore