37 research outputs found
Plasma leptin and insulin-like growth factor I levels during acute exacerbations of chronic obstructive pulmonary disease
<p>Abstract</p> <p>Background</p> <p>Recent studies have provided evidence for a link between leptin and tumor necrosis factor-alpha (TNF-α). Insulin-like growth factor I (IGF-I) mediates the metabolic effects of growth hormone (GH). The GH axis is believed to be suppressed in chronic obstructive pulmonary disease (COPD). The aim of this study is to find out whether acute exacerbations of COPD are followed by changes in plasma leptin and insulin-like growth factor I (IGF-I) levels and furthermore, whether these changes are related to systemic inflammation.</p> <p>Methods</p> <p>We measured serum leptin, IGF-I, TNF-α, interleukin 1β (IL-1β), interleukin 6 (IL-6) and interleukin 8 (IL-8) levels in 52 COPD patients with acute exacerbation on admission to hospital (Day 1) and two weeks later (Day 15). 25 healthy age-matched subjects served as controls. COPD patients were also divided into two subgroups (29 with chronic bronchitis and 23 with emphysema). Serum leptin and IGF-I were measured by radioimmunoassay and TNF-α, IL-1β, IL-6 and IL-8 were measured by ELISA.</p> <p>Results</p> <p>Serum leptin levels were significantly higher and serum IGF-I levels significantly lower in COPD patients on Day 1 than in healthy controls (p < 0.001). A positive correlation was observed between leptin and TNF-α on Day 1 (r = 0.620, p < 0.001). Emphysematous patients had significantly lower IGF-I levels compared to those with chronic bronchitis both on Day 1 and Day 15 (p = 0.003 and p < 0.001 respectively).</p> <p>Conclusion</p> <p>Inappropriately increased circulating leptin levels along with decreased IGF-I levels occured during acute exacerbations of COPD. Compared to chronic bronchitis, patients with emphysema had lower circulating IGF-I levels both at the onset of the exacerbation and two weeks later.</p
A prospective study of decline in fat free mass and skeletal muscle strength in chronic obstructive pulmonary disease
BACKGROUND: Skeletal muscle depletion is an important complication of chronic obstructive pulmonary disease (COPD) but little prospective data exists about the rate at which it occurs and the factors that promote its development. We therefore prospectively investigated the impact of disease severity, exacerbation frequency and treatment with corticosteroids on change in body composition and maximum isometric quadriceps strength (QMVC) over one year. METHODS: 64 patients with stable COPD (FEV(1 )mean (SD) 35.8(18.4) %predicted) were recruited from clinic and studied on two occasions one year apart. Fat free mass was determined using bioelectrical impedance analysis and a disease specific regression equation. RESULTS: QMVC fell from 34.8(1.5) kg to 33.3(1.5) kg (p = 0.04). The decline in quadriceps strength was greatest in those with the highest strength at baseline (R -0.28 p = 0.02) and was not correlated with lung function, exacerbation frequency or steroid treatment. Decline in fat free mass was similarly higher in those with largest FFM at baseline (R = -0.31 p = 0.01) but was more strongly correlated with greater gas trapping (R = -0.4 p = 0.001). Patients with frequent exacerbations (>1 per year) (n = 36) experienced a greater decline in fat free mass compared to infrequent exacerbators (n = 28) -1.3(3.7)kg vs. +1.2(3.1)kg (p = 0.005), as did patients on maintenance oral steroids (n = 8) -2.8(3.3) kg vs. +0.2(3.5) kg (p = 0.024) whereas in those who stopped smoking (n = 7) fat free mass increased; +2.7(3.1) kg vs. -0.51(3.5) kg (p = 0.026). CONCLUSION: Decline in fat free mass in COPD is associated with worse lung function, continued cigarette consumption and frequent exacerbations. Factors predicting progression of quadriceps weakness could not be identified from the present cohort
2D-DIGE proteomic analysis of vastus lateralis from COPD patients with low and normal fat free mass index and healthy controls
Abstract Background Chronic obstructive pulmonary disease (COPD) is associated with several extra-pulmonary effects of which skeletal muscle wasting is one of the most common and contributes to reduced quality of life, increased morbidity and mortality. The molecular mechanisms leading to muscle wasting are not fully understood. Proteomic analysis of human skeletal muscle is a useful approach for gaining insight into the molecular basis for normal and pathophysiological conditions. Methods To identify proteins involved in the process of muscle wasting in COPD, we searched differentially expressed proteins in the vastus lateralis of COPD patients with low fat free mass index (FFMI), as a surrogate of muscle mass (COPDL, n = 10) (FEV1 33 ± 4.3% predicted, FFMI 15 ± 0.2 Kg.m−2), in comparison to patients with COPD and normal FFMI (COPDN, n = 8) and a group of age, smoking history, and sex matched healthy controls (C, n = 9) using two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE) technology, combined with mass spectrometry (MS). The effect of silencing DOT1L protein expression on markers of cell arrest was analyzed in skeletal muscle satellite cells (HSkMSCs) in vitro and assessed by qPCR and Western blotting. Results A subset of 7 proteins was differentially expressed in COPDL compared to both COPDN and C. We found an increased expression of proteins associated with muscle homeostasis and protection against oxidative stress, and a decreased expression of structural muscle proteins and proteins involved in myofibrillogenesis, cell proliferation, cell cycle arrest and energy production. Among these was a decreased expression of the histone methyltransferase DOT1L. In addition, silencing of the DOT1L gene in human skeletal muscle satellite cells in vitro was significantly related to up regulation of p21 WAF1/Cip1/CDKN1A, a marker of cell arrest and ageing. Conclusions 2D-DIGE coupled with MS identified differences in the expression of several proteins in the wasted vastus lateralis that are relevant to the disease process. Down regulation of DOT1L in the vastus lateralis of COPDL patients may mediate the muscle wasting process through up regulation of markers of cell arrest and senescence
More Evidence that Depressive Symptoms Predict Mortality in COPD Patients: Is Type D Personality an Alternative Explanation?
The present study attempted to replicate our previous finding that depressive symptoms are a risk factor for mortality in stable chronic obstructive pulmonary disease (COPD), but in a different population with a different measure of depressive symptoms. We further investigated whether type D personality is associated with mortality in patients with COPD and whether it explains any relationship observed between depressive symptoms and mortality. In 122 COPD patients, mean age 60.8 +/- 10.3 years, 52% female, and mean forced expiratory volume in 1 s (FEV(1)) 41.1 +/- 17.6%pred, we assessed body mass index, post bronchodilator FEV(1), exercise capacity, depressive symptoms with the Hospital Anxiety and Depression Scale, and type D with the Type D Scale. In the 7 years follow-up, 48 (39%) deaths occurred. The median survival time was 5.3 years. Depressive symptoms (hazard ratio = 1.07, 95% confidence intervals = 1.00-1.14) were an independent risk factor for mortality. Type D was not associated with mortality. We can rule out type D as an explanation for the relationship between depressive symptoms and mortality observed in this sample. However, ambiguity remains as to the interpretation of the value of depressive symptoms in predicting death
Genome-wide mRNA expression profiling in vastus lateralis of COPD patients with low and normal fat free mass index and healthy controls
BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) has significant systemic effects beyond the lungs amongst which muscle wasting is a prominent contributor to exercise limitation and an independent predictor of morbidity and mortality. The molecular mechanisms leading to skeletal muscle dysfunction/wasting are not fully understood and are likely to be multi-factorial. The need to develop therapeutic strategies aimed at improving skeletal muscle dysfunction/wasting requires a better understanding of the molecular mechanisms responsible for these abnormalities. Microarrays are powerful tools that allow the investigation of the expression of thousands of genes, virtually the whole genome, simultaneously. We aim at identifying genes and molecular pathways involved in skeletal muscle wasting in COPD. METHODS: We assessed and compared the vastus lateralis transcriptome of COPD patients with low fat free mass index (FFMI) as a surrogate of muscle mass (COPD(L)) (FEV(1) 30 ± 3.6%pred, FFMI 15 ± 0.2 Kg.m(−2)) with patients with COPD and normal FFMI (COPD(N)) (FEV(1) 44 ± 5.8%pred, FFMI 19 ± 0.5 Kg.m(−2)) and a group of age and sex matched healthy controls (C) (FEV(1) 95 ± 3.9%pred, FFMI 20 ± 0.8 Kg.m(−2)) using Agilent Human Whole Genome 4x44K microarrays. The altered expression of several of these genes was confirmed by real time TaqMan PCR. Protein levels of P21 were assessed by immunoblotting. RESULTS: A subset of 42 genes was differentially expressed in COPD(L) in comparison to both COPD(N) and C (PFP < 0.05; −1.5 ≥ FC ≥ 1.5). The altered expression of several of these genes was confirmed by real time TaqMan PCR and correlated with different functional and structural muscle parameters. Five of these genes (CDKN1A, GADD45A, PMP22, BEX2, CGREF1, CYR61), were associated with cell cycle arrest and growth regulation and had been previously identified in studies relating muscle wasting and ageing. Protein levels of CDKN1A, a recognized marker of premature ageing/cell cycle arrest, were also found to be increased in COPD(L). CONCLUSIONS: This study provides evidence of differentially expressed genes in peripheral muscle in COPD patients corresponding to relevant biological processes associated with skeletal muscle wasting and provides potential targets for future therapeutic interventions to prevent loss of muscle function and mass in COPD. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12931-014-0139-5) contains supplementary material, which is available to authorized users
Cross-sectional and longitudinal assessment of muscle from regular chest computed tomography scans: L1 and pectoralis muscle compared to L3 as reference in non-small cell lung cancer
Karin JC Sanders,1 Juliette HRJ Degens,1 Anne-Marie C Dingemans,2 Annemie MWJ Schols1 1Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands; 2Department of Respiratory Medicine, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands Background: Computed tomography (CT) is increasingly used in clinical research for single-slice assessment of muscle mass to correlate with clinical outcome and evaluate treatment efficacy. The third lumbar level (L3) is considered as reference for muscle, but chest scans generally do not reach beyond the first lumbar level (L1). This study investigates if pectoralis muscle and L1 are appropriate alternatives for L3. Methods: CT scans of 115 stage IV non-small cell lung cancer patients were analyzed before and during tumor therapy. Skeletal muscle assessed at pectoralis and L1 muscle was compared to L3 at baseline. Furthermore, the prognostic significance of changes in muscle mass determined at different locations was investigated. Results: Pearson’s correlation coefficient between skeletal muscle at L3 and L1 was stronger (r=0.90, P<0.001) than between L3 and pectoralis muscle (r=0.71, P<0.001). Cox regression analysis revealed that L3 (HR 0.943, 95% CI: 0.92–0.97, P<0.001) and L1 muscle loss (HR 0.954, 95% CI: 0.93–0.98, P<0.001) predicted overall survival, whereas pectoralis muscle loss did not. Conclusion: L1 is a better alternative than pectoralis muscle to substitute L3 for analysis of muscle mass from regular chest CT scans. Keywords: body composition, muscle mass, computed tomography, respiratory diseas