8 research outputs found

    Myalgia in 30 Patients with Suspected Myopathy

    No full text
    Background: In patients with neuromuscular disorder, only little data of myalgia frequency and characterization exists. To date, only a weak correlation between pain intensity and pressure pain threshold has been found, and it remains enigmatic whether high pain intensity levels are equivalent to high pain sensitivity levels in neuromuscular disorders. Methods: 30 sequential patients with suspected neuromuscular disorder and myalgia were analyzed with regard to myalgia characteristics and clinical findings, including symptoms of depression and anxiety and pain- threshold. Results: A neuromuscular disorder was diagnosed in 14/30 patients. Muscular pain fasciculation syndrome (MPFS) without evidence for myopathy or myositis was diagnosed in 10/30 patients and 6/30 patients were diagnosed with pure myalgia without evidence for a neuromuscular disorder (e.g., myopathy, myositis, MPFS, polymyalgia rheumatica). Highest median pain scores were found in patients with pure myalgia and polymyalgia rheumatica. Pressure pain threshold measurement showed a significant difference between patients and controls in the biceps brachii muscle. Conclusion: Only a weak correlation between pain intensity and pressure pain threshold has been suggested, which is concordant with our results. The hypothesis that high pain intensity levels are equivalent to high pain sensitivity levels was not demonstrated

    Normal FGF-21-Serum Levels in Patients with Carnitine Palmitoyltransferase II (CPT II) Deficiency

    No full text
    Fibroblast growth factor 21 (FGF-21) is known to be a biomarker for mitochondrial disorders. An upregulation of FGF-21 in serum and muscle of carnitine palmitoyltransferase I (CPT I) and carnitine palmitoyltransferase II (CPT II) knock-out mice has been reported. In human CPT II deficiency, enzyme activity and protein content are normal, but the enzyme is abnormally regulated by malonyl-CoA and is abnormally thermolabile. Citrate synthase (CS) activity is increased in patients with CPT II deficiency. This may indicate a compensatory response to an impaired function of CPT II. In this study, FGF-21 serum levels in patients with CPT II deficiency during attack free intervals and in healthy controls were measured by enzyme linked immunosorbent assay (ELISA). The data showed no significant difference between FGF-21 concentration in the serum of patients with CPT II deficiency and that in the healthy controls. The results of the present work support the hypothesis that in muscle CPT II deficiency, in contrast to the mouse knockout model, mitochondrial fatty acid utilization is not persistently reduced. Thus, FGF-21 does not seem to be a useful biomarker in the diagnosis of CPT II deficiency

    The m.9143T>C Variant: Recurrent Infections and Immunodeficiency as an Extension of the Phenotypic Spectrum in MT-ATP6 Mutations?

    No full text
    Pathogenic variants in the MT-ATP6 are a well-known cause for maternally inherited mitochondrial disorders associated with a wide range of clinical phenotypes. Here, we present a 31- year old female with insulin-dependent diabetes mellitus, recurrent lactic acidosis and ketoacidosis recurrent infections with suspected immunodeficiency with T cell lymphopenia and hypogammaglobulinemia as well as proximal tetraparesis with severe muscle and limb pain and rapid physical exhaustion. Muscle biopsy and respiratory chain activities were normal. Single-exome sequencing revealed a variant in the MT-ATP6 gene: m.9143T>C. Analysis of further specimen of the index and mother (segregation studies) revealed the highest mutation load in muscle (99% level of mtDNA heteroplasmy) of the index patient. Interestingly, acute metabolic and physical decompensation during recurrent illness was documented to be a common clinical feature in patients with MT-ATP6 variants. However, it was not mentioned as a key symptom. Thus, we suggest that the clinical spectrum might be expanded in ATP6-associated diseases

    Camptocormia as a Novel Phenotype in a Heterozygous POLG2 Mutation

    No full text
    Mitochondrial dysfunction is known to play a key role in the pathophysiological pathway of neurodegenerative disorders. Nuclear-encoded proteins are involved in mtDNA replication, including DNA polymerase gamma, which is the only known replicative mtDNA polymerase, encoded by nuclear genes Polymerase gamma 1 (POLG) and Polymerase gamma 2 (POLG2). POLG mutations are well-known as a frequent cause of mitochondrial myopathies of nuclear origin. However, only rare descriptions of POLG2 mutations leading to mitochondriopathies exist. Here we describe a 68-year-old woman presenting with a 20-year history of camptocormia, mild proximal weakness, and moderate CK increase. Muscle histology showed COX-negative fibres. Genetic analysis by next generation sequencing revealed an already reported heterozygous c.1192-8_1207dup24 mutation in the POLG2 gene. This is the first report on a POLG2 mutation leading to camptocormia as the main clinical phenotype, extending the phenotypic spectrum of POLG2 associated diseases. This underlines the broad phenotypic spectrum found in mitochondrial diseases, especially in mitochondrial disorders of nuclear origin

    Normal Thermostability of p.Ser113Leu and p.Arg631Cys Variants of Mitochondrial Carnitine Palmitoyltransferase II (CPT II) in Human Muscle Homogenate

    No full text
    Previous fibroblast and recombinant enzyme studies showed a markedly thermolabile p.Ser113Leu variant compared to the wild-type (WT) in muscle carnitine palmitoyltransferase II (CPT II) deficiency. Additionally, it has been shown that cardiolipin (CLP) stimulated or inhibited the p.Ser113Leu recombinant variant depending on the pre-incubation temperatures. In this study, the thermolabilities of mitochondrial enzyme CPT II in muscle homogenates of patients with the p.Ser113Leu (n = 3) and p.Arg631Cys (n = 2) variants were identified to be similar to that of WT. Pre-incubation with CLP on ice stimulated the WT enzyme more than both variants. However, CLP stimulated the variants and WT at 46 °C to about 6–18-fold. The present data indicate that the thermostability of CPT II variant in muscle homogenate is similar to that of WT. This is in contrast to the increased thermolability of enzymes derived from fibroblast and that of recombinant enzymes. Hence, it can be speculated that the disruption of the compartmentation in muscle homogenate mediates a protective effect on the thermolability of the native variant. However, the exact mechanism remains unclear. However, the activating effect of CLP on CPT II in muscle homogenate seems to align with those on recombinant enzymes

    The Effect of Resveratrol on Mitochondrial Function in Myoblasts of Patients with the Common m.3243A>G Mutation

    No full text
    Mitochondrial function is essential for ATP-supply, especially in response to different cellular stressors. Increased mitochondrial biogenesis resulting from caloric restriction (CR) has been reported. Resveratrol (RSV) is believed to mimic the physiological effects of CR mainly via a sirtuin (SIRT) 1-dependent pathway. The effect of RSV on the physiological function of mitochondrial respiratory complexes was evaluated using a Seahorse XF96. Myoblasts of five patients harboring the m.3243A>G mutation and five controls were analyzed. The relative expression of several genes involved in mitochondrial biogenesis was evaluated for a better understanding of the coherent mechanisms. Additionally, media-dependent effects of nutritional compounds and hormonal restrictions (R) on myoblasts from patients and controls in the presence or absence of RSV were investigated. Culturing of myoblasts under these conditions led to an upregulation of almost all the investigated genes compared to normal nutrition. Under normal conditions, there was no positive effect of RSV on mitochondrial respiration in patients and controls. However, under restricted conditions, the respiratory factors measured by Seahorse were improved in the presence of RSV. Further studies are necessary to clarify the involved mechanisms and elucidate the controversial effects of resveratrol on SIRT1 and SIRT3 expression

    Bi-allelic variants in CHKA cause a neurodevelopmental disorder with epilepsy and microcephaly

    No full text
    The Kennedy pathways catalyze the de novo synthesis of phosphatidylcholine and phosphatidylethanolamine, the most abundant components of eukaryotic cell membranes. In recent years, these pathways have moved into clinical focus since four out of ten genes involved have been associated with a range of autosomal recessive rare diseases such as a neurodevelopmental disorder with muscular dystrophy (CHKB), bone abnormalities and cone-rod dystrophy (PCYT1A), and spastic paraplegia (PCYT2, SELENOI). We identified six individuals from five families with bi-allelic variants in CHKA presenting with severe global developmental delay, epilepsy, movement disorders, and microcephaly. Using structural molecular modeling and functional testing of the variants in a in a cell-based S. cerevisiae model, we determined that these variants reduce the enzymatic activity of CHKA and confer a significant impairment of the first enzymatic step of the Kennedy pathway. In summary, we present CHKA as a novel autosomal recessive gene for a neurodevelopmental disorder with epilepsy and microcephaly
    corecore