369 research outputs found

    Transcriptional Homeostasis of a Mangrove Species, Ceriops tagal, in Saline Environments, as Revealed by Microarray Analysis

    Get PDF
    <div><h3>Background</h3><p>Differential responses to the environmental stresses at the level of transcription play a critical role in adaptation. Mangrove species compose a dominant community in intertidal zones and form dense forests at the sea-land interface, and although the anatomical and physiological features associated with their salt-tolerant lifestyles have been well characterized, little is known about the impact of transcriptional phenotypes on their adaptation to these saline environments.</p> <h3>Methodology and Principal findings</h3><p>We report the time-course transcript profiles in the roots of a true mangrove species, <em>Ceriops tagal</em>, as revealed by a series of microarray experiments. The expression of a total of 432 transcripts changed significantly in the roots of <em>C. tagal</em> under salt shock, of which 83 had a more than 2-fold change and were further assembled into 59 unigenes. Global transcription was stable at the early stage of salt stress and then was gradually dysregulated with the increased duration of the stress. Importantly, a pair-wise comparison of predicted homologous gene pairs revealed that the transcriptional regulations of most of the differentially expressed genes were highly divergent in <em>C. tagal</em> from that in salt-sensitive species, <em>Arabidopsis thaliana</em>.</p> <h3>Conclusions/Significance</h3><p>This work suggests that transcriptional homeostasis and specific transcriptional regulation are major events in the roots of <em>C. tagal</em> when subjected to salt shock, which could contribute to the establishment of adaptation to saline environments and, thus, facilitate the salt-tolerant lifestyle of this mangrove species. Furthermore, the candidate genes underlying the adaptation were identified through comparative analyses. This study provides a foundation for dissecting the genetic basis of the adaptation of mangroves to intertidal environments.</p> </div

    A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments

    Get PDF
    Many mammals are well adapted to surviving in extremely cold environments. These species have likely accumulated genetic changes that help them efficiently cope with low temperatures. It is not known whether the same genes related to cold adaptation in one species would be under selection in another species. The aims of this study therefore were: to create a compendium of mammalian genes related to adaptations to a low temperature environment; to identify genes related to cold tolerance that have been subjected to independent positive selection in several species; to determine promising candidate genes/pathways/organs for further empirical research on cold adaptation in mammals

    Listening In on the Past: What Can Otolith δ18O Values Really Tell Us about the Environmental History of Fishes?

    Get PDF
    Oxygen isotope ratios from fish otoliths are used to discriminate marine stocks and reconstruct past climate, assuming that variations in otolith δ18O values closely reflect differences in temperature history of fish when accounting for salinity induced variability in water δ18O. To investigate this, we exploited the environmental and migratory data gathered from a decade using archival tags to study the behaviour of adult plaice (Pleuronectes platessa L.) in the North Sea. Based on the tag-derived monthly distributions of the fish and corresponding temperature and salinity estimates modelled across three consecutive years, we first predicted annual otolith δ18O values for three geographically discrete offshore sub-stocks, using three alternative plausible scenarios for otolith growth. Comparison of predicted vs. measured annual δ18O values demonstrated >96% correct prediction of sub-stock membership, irrespective of the otolith growth scenario. Pronounced inter-stock differences in δ18O values, notably in summer, provide a robust marker for reconstructing broad-scale plaice distribution in the North Sea. However, although largely congruent, measured and predicted annual δ18O values of did not fully match. Small, but consistent, offsets were also observed between individual high-resolution otolith δ18O values measured during tag recording time and corresponding δ18O predictions using concomitant tag-recorded temperatures and location-specific salinity estimates. The nature of the shifts differed among sub-stocks, suggesting specific vital effects linked to variation in physiological response to temperature. Therefore, although otolith δ18O in free-ranging fish largely reflects environmental temperature and salinity, we counsel prudence when interpreting otolith δ18O data for stock discrimination or temperature reconstruction until the mechanisms underpinning otolith δ18O signature acquisition, and associated variation, are clarified

    How South Pacific mangroves may respond to predicted climate change and sea level rise

    Get PDF
    In the Pacific islands the total mangrove area is about 343,735 ha, with largest areas in Papua New Guinea, Solomon Islands, Fiji and New Caledonia. A total of 34 species of mangroves occur, as well as 3 hybrids. These are of the Indo-Malayan assemblage (with one exception), and decline in diversity from west to east across the Pacific, reaching a limit at American Samoa. Mangrove resources are traditionally exploited in the Pacific islands, for construction and fuel wood, herbal medicines, and the gathering of crabs and fish. There are two main environmental settings for mangroves in the Pacific, deltaic and estuarine mangroves of high islands, and embayment, lagoon and reef flat mangroves of low islands. It is indicated from past analogues that their close relationship with sea-level height renders these mangrove swamps particularly vulnerable to disruption by sea-level rise. Stratigraphic records of Pacific island mangrove ecosystems during sea-level changes of the Holocene Period demonstrate that low islands mangroves can keep up with a sea-level rise of up to 12 cm per 100 years. Mangroves of high islands can keep up with rates of sea-level rates of up to 45 cm per 100 years, according to the supply of fluvial sediment. When the rate of sea-level rise exceeds the rate of accretion, mangroves experience problems of substrate erosion, inundation stress and increased salinity. Rise in temperature and the direct effects of increased CO2 levels are likely to increase mangrove productivity, change phenological patterns (such as the timing of flowering and fruiting), and expand the ranges of mangroves into higher latitudes. Pacific island mangroves are expected to demonstrate a sensitive response to the predicted rise in sea-level. A regional monitoring system is needed to provide data on ecosystem changes in productivity, species composition and sedimentation. This has been the intention of a number of programs, but none has yet been implemented

    Relative fat oxidation is higher in children than adults

    Get PDF
    Background: Prepubescent children may oxidize fatty acids more readily than adults. Therefore, dietary fat needs would be higher for children compared with adults. The dietary fat recommendations are higher for children 4 to 18 yrs (i.e., 25 to 35% of energy) compared with adults (i.e., 20 to 35% of energy). Despite this, many parents and children restrict dietary fat for health reasons. Methods: This study assessed whether rates of fat oxidation are similar between prepubescent children and adults. Ten children (8.7 ± 1.4 yr, 33 ± 13 kg mean ± SD) in Tanner stage 1 and 10 adults (41.6 ± 8 yr, 74 ± 13 kg) were fed a weight maintenance diet for three days to maintain body weight and to establish a consistent background for metabolic rate measurements (all foods provided). Metabolic rate was measured on three separate occasions before and immediately after breakfast and for 9 hrs using a hood system (twice) or a room calorimeter (once) where continuous metabolic measurements were taken. Results: During all three sessions whole body fat oxidation was higher in children (lower RQ) compared to adults (mean RQ= 0.84 ± .016 for children and 0.87 ± .02, for adults, p < 0.02). Although, total grams of fat oxidized was similar in children (62.7 ± 20 g/24 hrs) compared to adults (51.4 ± 19 g/24 hrs), the grams of fat oxidized relative to calorie expenditure was higher in children (0.047 ± .01 g/kcal, compared to adults (0.032 ± .01 p < 0.02). Females oxidized more fat relative to calorie expenditure than males of a similar age. A two way ANOVA showed no interaction between gender and age in terms of fax oxidation. Conclusion: These data suggest that fat oxidation relative to total calorie expenditure is higher in prepubescent children than in adults. Consistent with current dietary guidelines, a moderate fat diet is appropriate for children within the context of a diet that meets their energy and nutrient needs. Originally published Nutrition Journal, Vol. 6, No. 19, Aug 200

    Salicylic acid and salicylic acid glucoside in xylem sap of Brassica napus infected with Verticillium longisporum

    Get PDF
    Salicylic acid (SA) and its glucoside (SAG) were detected in xylem sap of Brassica napus by HPLC–MS. Concentrations of SA and SAG in xylem sap from the root and hypocotyl of the plant, and in extracts of shoots above the hypocotyl, increased after infection with the vascular pathogen Verticillium longisporum. Both concentrations were correlated with disease severity assessed as the reduction in shoot length. Furthermore, SAG levels in shoot extracts were correlated with the amount of V. longisporum DNA in the hypocotyls. Although the concentration of SAG (but not SA) in xylem sap of infected plants gradually declined from 14 to 35 days post infection, SAG levels remained significantly higher than in uninfected plants during the whole experiment. Jasmonic acid (JA) and abscisic acid (ABA) levels in xylem sap were not affected by infection with V. longisporum. SA and SAG extend the list of phytohormones potentially transported from root to shoot with the transpiration stream. The physiological relevance of this transport and its contribution to the distribution of SA in plants remain to be elucidated

    Influence of soil water content and atmospheric conditions on leaf water potential in cv. "Touriga Nacional" deep-rooted vineyards

    Get PDF
    Abstract In this study, the influence of soil and atmosphere conditions on noon and basal leaf water potential of vines ‘‘Touriga Nacional’’ in the Da˜o region submitted to different irrigation treatments is analysed. Both indicators showed to be dependent on environmental conditions at the time of measurement. Leaf water potential at noon of fully watered plants was linearly related with atmospheric conditions, with values registered when vapour pressure deficit (VPD) was higher than approximately 3 kPa being no different from the values registered in stressed plants. Therefore, this indicator cannot be reliably used to distinguish different plant water stress levels when atmospheric conditions induce high evaporative demands. The basal leaf water potential (wb) was also influenced by VPD at the time of measurement for all soil water conditions. In well irrigated plants, it was even possible to establish a baseline that can therefore be used to identify nonwater stressed conditions (wb (MPa) = -0.062–0.0972 VPD (kPa), r2 = 0.78). A good correlation was found between soil humidity and wb. However, more than the average value of the whole thickness of soil monitored, the wb values were dependent on the distribution of soil humidity, with the plants responding to the presence of wet layers

    O2-Filled Swimbladder Employs Monocarboxylate Transporters for the Generation of O2 by Lactate-Induced Root Effect Hemoglobin

    Get PDF
    The swimbladder volume is regulated by O2 transfer between the luminal space and the blood In the swimbladder, lactic acid generation by anaerobic glycolysis in the gas gland epithelial cells and its recycling through the rete mirabile bundles of countercurrent capillaries are essential for local blood acidification and oxygen liberation from hemoglobin by the “Root effect.” While O2 generation is critical for fish flotation, the molecular mechanism of the secretion and recycling of lactic acid in this critical process is not clear. To clarify molecules that are involved in the blood acidification and visualize the route of lactic acid movement, we analyzed the expression of 17 members of the H+/monocarboxylate transporter (MCT) family in the fugu genome and found that only MCT1b and MCT4b are highly expressed in the fugu swimbladder. Electrophysiological analyses demonstrated that MCT1b is a high-affinity lactate transporter whereas MCT4b is a low-affinity/high-conductance lactate transporter. Immunohistochemistry demonstrated that (i) MCT4b expresses in gas gland cells together with the glycolytic enzyme GAPDH at high level and mediate lactic acid secretion by gas gland cells, and (ii) MCT1b expresses in arterial, but not venous, capillary endothelial cells in rete mirabile and mediates recycling of lactic acid in the rete mirabile by solute-specific transcellular transport. These results clarified the mechanism of the blood acidification in the swimbladder by spatially organized two lactic acid transporters MCT4b and MCT1b
    corecore