25 research outputs found

    Patterns and processes in a Pleistocene fluvio-aeolian environment

    Get PDF
    The 35 m-thick record of fine-grained fluvial and aeolian deposits in the Roer Valley Graben (south-eastern Netherlands) forms an important long-term archive of terrestrial landscape development in a changing climate. Jeroen Schokker explores the sedimentary, paleo-ecological and dating aspects of this sedimentary sequence. He reconstructs the prevailing sedimentary processes, depositional patterns and palaeo-environmental development during the Middle and Late Quaternary. By applying Optically Stimulated Luminescence dating on quartz grains, he is able to present an accurate assessment of the timing of deposition of these sediments

    Regional sediment deficits in the Dutch lowlands:Implications for long-term land-use options

    Get PDF
    Background, Aim and Scope. Coastal and river plains are the surfaces of depositional systems, to which sediment input is a parameter of key-importance. Their habitation and economic development usually requires protection with dikes, quays, etc., which are effective in retaining floods but have the side effect of impeding sedimentation in their hinterlands. The flood-protected Dutch lowlands (so-called dike-ring areas) have been sediment-starved for up to about a millennium. In addition to this, peat decomposition and soil compaction, brought about by land drainage, have caused significant land subsidence. Sediment deficiency, defined as the combined effect of sediment-starvation and drainage-induced volume losses, has already been substantial in this area, and it is expected to become urgent in view of the forecasted effects of climate change (sea-level rise, intensified precipitation and run-off). We therefore explore this deficiency, compare it with natural (Holocene) and current human sediment inputs, and discuss it in terms of long-term land-use options. Materials and Methods. We use available 3D geological models to define natural sediment inputs to our study area. Recent progress in large-scale modelling of peat oxidation and compaction enables us to address volume loss associated with these processes. Human sediment inputs are based on published minerals statistics. All results are given as first-order approximations. Results. The current sediment deficit in the diked lowlands of the Netherlands is estimated at 136 ± 67 million m3/a. About 85% of this volume is the hypothetical amount of sediment required to keep up with sea-level rise, and 15% is the effect of land drainage (peat decomposition and compaction). The average Holocene sediment input to our study area (based on a total of 145 km3) is -14 million m3/a, and the maximum (millennium-averaged) input ∼26 million m3/a. Historical sediment deficiency has resulted in an unused sediment accommodation space of about 13.3 km3. Net human input of sediment material currently amounts to ∼23 million m3/a. Discussion. As sedimentary processes in the Dutch lowlands have been retarded, the depositional system's natural resilience to sea-level rise is low, and all that is left to cope is human counter-measure. Preserving some sort of status quo with water management solutions may reach its limits in the foreseeable future. The most viable long-term option therefore seems a combination of allowing for more water in open country (anything from flood-buffer zones to open water) and raising lands that are to be built up (enabling their lasting protection). As to the latter, doubling or tripling the use of filling sand in a planned and sustained effort may resolve up to one half of the Dutch sediment deficiency problems in about a century. Conclusions, Recommendations and Perspectives. We conclude that sediment deficiency - past, present and future - challenges the sustainable habitation of the Dutch lowlands. In order to explore possible solutions, we recommend the development of long-term scenarios for the changing lowland physiography, that include the effects of Global Change, compensation measures, costs and benefits, and the implications for long-term land-use options. © 2007 ecomed publishers (Verlagsgruppe Hüthig Jehle Rehm GmbH)

    Geoscience for cities: delivering Europe’s sustainable urban future

    Get PDF
    European Union (EU) policy is clear in its ambition to deliver a sustainable urban future for Europe. In this paper, we consider the role of urban geoscience to help achieve these ambitions. We highlight the relevance of geology to urban subsurface planning and wider EU policy and strategy. Despite the lack of explicit mention of urban underground space in key policy documents, we identify a significant number of priority urban issues for which geological characterisation is a pre-requisite and for which the geological system forms part of the solution, such as mitigation of climate impacts, delivering net zero energy, and implementing nature-based solutions. We reflect on the paradigm shift of urban geoscience as a geological discipline, rooted initially in engineering geology but which has moved towards an interdisciplinary, solution-focused science operating at the inter-section of environmental–social–built systems. In this regard, we highlight cutting-edge urban geoscience research aligned to current urban challenges and note, in particular, the significance of digital technologies to enable 3D urban characterisation, support data-driven decision-making for planning and development, and serve as a means to communicate geology to urban practitioners. The role of the urban geoscientist as an agent of change to enhance integrated science, improve the accessibility of geological issues, and accelerate the translation of national–regional geology to local settings and to urban policy drivers should not be underestimated

    Opening up the subsurface for the cities of tomorrow Considering access to subsurface knowledge – Evaluation of practices and techniques

    Get PDF
    This report is the result of COST Action TU1206 Working Group 2, Work package 2.3, and focusses on 3D urban subsurface modelling and visualisation. The major aims of this report are: 1) evaluating current techniques and identify good practices / best efforts in 3D geological modelling and visualisation of the urban subsurface, based on case studies, and 2) co-developing (subsurface specialists & model users) requirements for optimal use of 3D geological modelling information in specific planning and policy contexts. Three major topics have been considered: • Constructing and maintaining 3D urban geological models • Modelling man-made ground • Visualising 3D urban subsurface model results To improve the use of subsurface modelling in urban planning in the future, the following challenges have been identified: • The complexity of the urban subsurface, including man-made ground, combined with the level of detail of information asked for in many urban planning issues demand that geologists look beyond their traditional data sources. • Combined 3D property modelling of the small-scale heterogeneity of man-made deposits and natural deposits requires new modelling approaches. • Management of the shallow urban subsurface requires model tools that can be frequently updated to reflect the frequently changing properties and functions of the urban subsurface. • There is a need for dynamic (4D) urban subsurface models that can be used for real-time monitoring and incorporation of time-series data on subsurface properties. • It would be cost-effective to have an actively maintained, scalable geological framework model of a city available that forms a common basis for the various kinds of dedicated models of parts of the city. • To give subsurface information a firm position in urban planning and management, geological information will have to be presented in the right format, and at the right time. It is absolutely necessary to include the subsurface infrastructure and to combine the model with above-ground information

    Changes in blood metabolites, intestinal microbiota composition and gene expression of 95 weeks old laying hens differing in egg production and egg breaking strength

    No full text
    Herein, we investigated to what extent molecular phenotypes of the systemic level (blood) and local (intestine) are associated with the performance of laying hens at 95 weeks of age. After the trial had run for 95 weeks, two performance groups were generated, i.e., egg production (PROD) and egg breaking strength (BS). A subset of 21 cages, 116 hens, was measured to indicate the metabolism and disease status. Additionally, a focus group (four cages) was made to perform molecular pheno-typing in the intestine. A notifiable observation made during the post-mortem dissection was that approximately 12% of the birds at 95 weeks had developed certain aberrations and/or impairments (denoted as organ morbidity). At the systemic level, we observed five metabolites (γGT, triglycerides, HDL, glucose, and cholesterol) significantly associated to organ morbidity, and only two metabolites (urea and aspartate aminotransferase) to the performance phenotypes. At the local level, when comparing high PROD vs. low PROD, we observed differentially expressed genes involved in cell cycle processes and the extracellular matrix. When comparing high BS vs. low BS differentially, expressed genes were observed mainly involved in immune and cell cycle-related processes. This knowledge is crucial for developing novel strategies of keeping laying hens vital
    corecore