113 research outputs found
Review and meta-analysis of genetic polymorphisms associated with exceptional human longevity
Background
Many factors contribute to exceptional longevity, with genetics playing a significant role. However, to date, genetic studies examining exceptional longevity have been inconclusive. This comprehensive review seeks to determine the genetic variants associated with exceptional longevity by undertaking meta-analyses.
Methods
Meta-analyses of genetic polymorphisms previously associated with exceptional longevity (85+) were undertaken. For each variant, meta-analyses were performed if there were data from at least three independent studies available, including two unpublished additional cohorts.
Results
Five polymorphisms, ACE rs4340, APOE Δ2/3/4, FOXO3A rs2802292, KLOTHO KL-VS and IL6 rs1800795 were significantly associated with exceptional longevity, with the pooled effect sizes (odds ratios) ranging from 0.42 (APOE Δ4) to 1.45 (FOXO3A males).
Conclusion
In general, the observed modest effect sizes of the significant variants suggest many genes of small influence play a role in exceptional longevity, which is consistent with results for other polygenic traits. Our results also suggest that genes related to cardiovascular health may be implicated in exceptional longevity. Future studies should examine the roles of gender and ethnicity and carefully consider study design, including the selection of appropriate controls
Investigating olfactory gene variation and odour identification in older adults
Ageing is associated with a decrease in odour identification. Additionally, deficits in olfaction have been linked to age-related disease and mortality. Heritability studies suggest genetic variation contributes to olfactory identification. The olfactory receptor (OR) gene family is the largest in the human genome and responsible for overall odour identification. In this study, we sought to find olfactory gene family variants associated with individual and overall odour identification and to examine the relationships between polygenic risk scores (PRS) for olfactory-related phenotypes and olfaction. Participants were Caucasian older adults from the Sydney Memory and Ageing Study and the Older Australian Twins Study with genome-wide genotyping data (n = 1395, mean age = 75.52 ± 6.45). The Brief-Smell Identification Test (BSIT) was administered in both cohorts. PRS were calculated from independent GWAS summary statistics for Alzheimerâs disease (AD), white matter hyperintensities (WMH), Parkinsonâs disease (PD), hippocampal volume and smoking. Associations with olfactory receptor genes (n = 967), previously identified candidate olfaction-related SNPs (n = 36) and different PRS with BSIT scores (total and individual smells) were examined. All of the relationships were analysed using generalised linear mixed models (GLMM), adjusted for age and sex. Genes with suggestive evidence for odour identification were found for 8 of the 12 BSIT items. Thirteen out of 36 candidate SNPs previously identified from the literature were suggestively associated with several individual BSIT items but not total score. PRS for smoking, WMH and PD were negatively associated with chocolate identification. This is the first study to conduct genetic analyses with individual odorant identification, which found suggestive olfactory-related genes and genetic variants for multiple individual BSIT odours. Replication in independent and larger cohorts is needed
A meta-analysis of genome-wide association studies of growth differentiation Factor-15 concentration in blood
Blood levels of growth differentiation factor-15 (GDF-15), also known as macrophage inhibitory cytokine-1 (MIC-1), have been associated with various pathological processes and diseases, including cardiovascular disease and cancer. Prior studies suggest genetic factors play a role in regulating blood MIC-1/GDF-15 concentration. In the current study, we conducted the largest genome-wide association study (GWAS) to date using a sample of âŒ5,400 community-based Caucasian participants, to determine the genetic variants associated with MIC-1/GDF-15 blood concentration. Conditional and joint (COJO), gene-based association, and gene-set enrichment analyses were also carried out to identify novel loci, genes, and pathways. Consistent with prior results, a locus on chromosome 19, which includes nine single nucleotide polymorphisms (SNPs) (top SNP, rs888663, p = 1.690 Ă 10-35), was significantly associated with blood MIC-1/GDF-15 concentration, and explained 21.47% of its variance. COJO analysis showed evidence for two independent signals within this locus. Gene-based analysis confirmed the chromosome 19 locus association and in addition, a putative locus on chromosome 1. Gene-set enrichment analyses showed that theâCOPI-mediated anterograde transportâ gene-set was associated with MIC-1/GDF15 blood concentration with marginal significance after FDR correction (p = 0.067). In conclusion, a locus on chromosome 19 was associated with MIC-1/GDF-15 blood concentration with genome-wide significance, with evidence for a new locus (chromosome 1). Future studies using independent cohorts are needed to confirm the observed associations especially for the chromosomes 1 locus, and to further investigate and identify the causal SNPs that contribute to MIC-1/GDF-15 levels
Genome-wide meta-analyses reveal novel loci for verbal short-term memory and learning
Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (Nâ=â53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes
The prevalence of mild cognitive impairment in diverse geographical and ethnocultural regions: The COSMIC Collaboration
Background Changes in criteria and differences in populations studied and methodology have produced a wide range of prevalence estimates for mild cognitive impairment (MCI). Methods Uniform criteria were applied to harmonized data from 11 studies from USA, Europe, Asia and Australia, and MCI prevalence estimates determined using three separate definitions of cognitive impairment. Results The published range of MCI prevalence estimates was 5.0%-36.7%. This was reduced with all cognitive impairment definitions: performance in the bottom 6.681% (3.2%-10.8%); Clinical Dementia Rating of 0.5 (1.8%-14.9%); Mini-Mental State Examination score of 24-27 (2.1%-20.7%). Prevalences using the first definition were 5.9% overall, and increased with age (P < .001) but were unaffected by sex or the main races/ethnicities investigated (Whites and Chinese). Not completing high school increased the likelihood of MCI (P = .01). Conclusion Applying uniform criteria to harmonized data greatly reduced the variation in MCI prevalence internationally
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
The genetic architecture of the human cerebral cortex
INTRODUCTION
The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure.
RATIONALE
To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations.
RESULTS
We identified 306 nominally genome-wide significant loci (P < 5 Ă 10â8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 Ă 10â10; 187 influencing surface area and 12 influencing thickness).
Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = â0.32, SE = 0.05, P = 6.5 Ă 10â12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness.
To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity.
We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinsonâs disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism.
CONCLUSION
This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function
EuFeAs under high pressure: an antiferromagnetic bulk superconductor
We report the ac magnetic susceptibility and resistivity
measurements of EuFeAs under high pressure . By observing nearly
100% superconducting shielding and zero resistivity at = 28 kbar, we
establish that -induced superconductivity occurs at ~30 K in
EuFeAs. shows an anomalous nearly linear temperature dependence
from room temperature down to at the same . indicates that
an antiferromagnetic order of Eu moments with ~20 K persists
in the superconducting phase. The temperature dependence of the upper critical
field is also determined.Comment: To appear in J. Phys. Soc. Jpn., Vol. 78 No.
- âŠ