10 research outputs found

    Multistatic Tracking with the Maximum Likelihood Probabilistic Multi-Hypothesis Tracker

    Get PDF
    Multistatic sonar tracking is a difficult proposition. The ocean environment typically features very complex propagation conditions, causing low target probabilities of detection and high clutter levels. Additionally, most sonar targets are relatively low speed, which makes it difficult to use Doppler (if available) to separate target returns from clutter returns. The Maximum Likelihood Probabilistic Data Association Tracker (ML-PDA) and the Maximum Likelihood Probabilistic Multi-Hypothesis Tracker (ML-PMHT) --- a similar algorithm to ML-PDA --- can be implemented as effective multistatic trackers. This dissertation will develop a tracking framework for these algorithms. This framework will focus mainly on ML-PMHT, which has an inherent advantage in that its log-likelihood ratio (LLR) has a simple multitarget formulation, which allows it to be implemented as a true multitarget tracker. First, this multitarget LLR will be implemented for ML-PMHT, which will give it superior performance over ML-PDA for instances where multiple targets are closely spaced with similar motion dynamics. Next, the performance of ML-PMHT will be compared when it is applied in Cartesian measurement space and in delay-bearing measurement space, where the measurement covariance is more accurately represented. Following this, a maneuver-model parameterization will be introduced that will allow ML-PDA and ML-PMHT to follow sharply maneuvering targets; their previous straight-line parameterization only allowed them to follow moderately maneuvering targets. Finally, a novel method of determining a tracking threshold for ML-PMHT will be developed by applying extreme value theory to the probabilistic properties of the clutter. This will also be done with target measurements, which will allow the issue of trackability for ML-PMHT to be explored. Probabilistic expressions for the maximum values of the LLR surface caused by both clutter and the target will be developed, which will allow for the determination of target trackability in any given scenario

    A Comparison of a Single Receiver and a Multi-Receiver Techniques to Mitigate Partial Band Interference

    Get PDF
    Many acoustic channels suffer from interference which is neither narrowband nor impulsive. This relatively long duration partial band interference can be particularly detrimental to system performance. We survey recent work in interference mitigation as background motivation to develop a spatial diversity receiver for use in underwater networks and compare this novel multi-receiver interference mitigation strategy with a recently developed single receiver interference mitigation algorithm using experimental data collected from the underwater acoustic network at the Atlantic Underwater Test and Evaluation Center. The network consists of multiple distributed cabled hydrophones that receive data transmitted over a time-varying multipath channel in the presence of partial band interference produced by interfering active sonar signals. In operational networks, many dropped messages are lost due to partial band interference which corrupts different portions of the received signal depending on the relative position of the interferers, information source and receivers due to the slow speed of propagation

    Interference Suppression in Congested Undersea Environments

    Get PDF
    Many acoustic channels suffer from interference which is neither narrowband nor impulsive. This relatively long duration partial band interference can be particularly detrimental to system performance. In operational networks, many “dropped” messages are lost due to partial band interference which corrupts different portions of the received signal depending on the relative position of the interferers, information source and receivers due to the slow speed of propagation. We survey recent work in interference mitigation as background motivation to develop a spatial diversity receiver for use in underwater networks and compare this multi-receiver interference mitigation strategy with a recently developed single receiver interference mitigation algorithm using experimental data collected from the underwater acoustic network at the Atlantic Underwater Test and Evaluation Center. The results indicate that both mitigation strategies are effective: parameterized interference cancellation is most effective at moderate SIRs whereas spatial diversity reconstruction is effective and realizes the most gain at high SIRs. We also apply the parametized interference cancellation to the problem of estimating mutually interfering waveforms when it is desired to know both time domain signals and find that it effectively extracts both mutually interfering linear frequency modulated (LFM) and orthogonal frequency division multiplexing (OFDM) waveforms

    The Effect of K-Distributed Clutter on Trackability

    No full text

    Extreme-value analysis for mlML-PMHT, Part 2: target trackability

    No full text

    Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars

    No full text
    corecore