139 research outputs found
The Use of a Scoring System to Guide Thromboprophylaxis in a High-Risk Pregnant Population
Guidelines for thromboprophylaxis in pregnancy are usually based upon clinical observations and expert opinion. For optimal impact, their use must be attended by consistency in the advice given to women. In this observational study, we evaluated the performance of a scoring system, used as a guide for clinicians administering dalteparin to pregnant women at increased risk of venous thromboembolism. The work included 47 women treated with dalteparin prior to adoption of the scoring system and 58 women treated with dalteparin after its adoption. The indication for thromboprophylaxis was recorded in each case together with details of the regimen employed, obstetric, and haematological outcomes. The main outcome measure was to determine whether consistency improved after adoption of the scoring system. We also recorded the occurrence of any new venous thromboembolism, haemorrhage, the use of regional anaesthesia during labour, evidence of allergy, and thrombocytopenia. We found that use of the scoring system improved the consistency of advice and increased the mean duration of thromboprophylaxis. None of the subjects suffered venous thromboembolism after assessment using the scoring system. There was no increase in obstetric or anaesthetic morbidity when dalteparin was given antenatally period and no evidence of heparin-induced thrombocytopenia
Light suppression of nitrate reductase activity in seedling and young plant tissues
Light is often reported to enhance plant nitrate reductase (NR) activity; we have identified a context in which light strongly suppresses NR activity. In vitro NR activity measurements of laboratory-grown seedlings showed strong suppression of nitrate-induced NR activity in cotyledon, hypocotyl, and root tissues of Ipomoea hederacea (L.) Jacquin; robust NR activity accumulated in nitrate-induced tissues in the dark, but was absent or significantly reduced in tissues exposed to light during the incubation. The suppressive mechanism appears to act at a point after nitrate perception; tissues pre-incubated with nitrate in the light were potentiated and developed NR activity more rapidly than nitrate-induced tissues not so pre-exposed. Suppression was affected by moderate to low light levels under full-spectrum light sources and by single-wavelength red, green, and blue sources. The suppression phenomenon persisted in early (first through fourth) leaves of glasshouse plants grown in soil, and in artificially rejuvenated cotyledons. Collectively these observations suggest a link between light perception and NR regulation that remains to be fully characterized
De novo Assembly of the Burying Beetle Nicrophorus orbicollis (Coleoptera: Silphidae) Transcriptome Across Developmental Stages with Identification of Key Immune Transcripts
Burying beetles (Nicrophorus spp.) are among the relatively few insects that provide parental care while not belonging to the eusocial insects such as ants or bees. This behavior incurs energy costs as evidenced by immune deficits and shorter life-spans in reproducing beetles. In the absence of an assembled transcriptome, relatively little is known concerning the molecular biology of these beetles. This work details the assembly and analysis of the Nicrophorus orbicollis transcriptome at multiple developmental stages. RNA-Seq reads were obtained by next-generation sequencing and the transcriptome was assembled using the Trinity assembler. Validation of the assembly was performed by functional characterization using Gene Ontology (GO), Eukaryotic Orthologous Groups (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Differential expression analysis highlights developmental stage-specific expression patterns, and immunity-related transcripts are discussed. The data presented provides a valuable molecular resource to aid further investigation into immunocompetence throughout this organism’s sexual development
Near-Death Experiences in Patients Undergoing Cardiopulmonary Resuscitation
ABSTRACT: The purposes of this two-phase descriptive study were to docu ment the frequency of near-death experiences (NDEs) in a nonprobability convenience sample of patients undergoing cardiopulmonary resuscitation (CPR), to describe the types of NDE experienced most commonly during CPR, and to describe patients' views of helpful nursing responses to reports of NDEs. In Phase I a nurse read to subjects Greyson's (1983a) NDE scale. In Phase II, we used an open-ended interview designed to elicit patients' perception of helpful nursing responses to NDE reports. Results have implications for broad ening the groups of persons offering patients an opportunity to discuss NDEs after CPR. The quality of health care is not measured solely by the number of human beings who survive. Rather, it is measured by the number of patients who live on, for however long, with a sense of dignity, well being, and worth. In the 1990s we are faced with the fixed variables of Ms
Determinants of legacy effects in pine trees – implications from an irrigation-stop experiment
Tree responses to altered water availability range from immediate (e.g. stomatal regulation) to delayed (e.g. crown size adjustment). The interplay of the different response times and processes, and their effects on long-term whole-tree performance, however, is hardly understood. Here we investigated legacy effects on structures and functions of mature Scots pine in a dry inner-Alpine Swiss valley after stopping an 11-yr lasting irrigation treatment. Measured ecophysiological time series were analysed and interpreted with a system-analytic tree model. We found that the irrigation stop led to a cascade of downregulations of physiological and morphological processes with different response times. Biophysical processes responded within days, whereas needle and shoot lengths, crown transparency, and radial stem growth reached control levels after up to 4 yr only. Modelling suggested that organ and carbon reserve turnover rates play a key role for a tree’s responsiveness to environmental changes. Needle turnover rate was found to be most important to accurately model stem growth dynamics. We conclude that leaf area and its adjustment time to new conditions is the main determinant for radial stem growth of pine trees as the transpiring area needs to be supported by a proportional amount of sapwood, despite the growth-inhibiting environmental conditions
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
Defects in Regulation of Local Immune Responses Resulting in Atherosclerosis
Atherosclerosis is nowadays generally accepted as an inflammatory disease
but the mechanism of its origin and development have not yet been fully clarified.
The present review focuses on the role of the local immune system as one of the
key players in the pathogenesis of the complex process. Its part represented by
vascular-associated lymphoid tissue (VALT) within the arterial wall participates
directly in the vascular wall's homeostatis. Its inordinate activation during
ontogenic development of an individual, this formerly defensive and physiologic
mechanism transform into a pathological process resulting in an impairing
inflammation. Hsp60, CRP and oxidized or otherwise modified LDL are serious
candidates for triggering these pathological changes. The principal role is played
by anti-Hsp60 antibodies and by shear stress originating on the surface of
endothelium due to blood flow. The experimental and clinical data
supporting this immunological hypothesis of atherosclerosis are discussed
Melting and differentiation of early-formed asteroids: The perspective from high precision oxygen isotope studies
A number of distinct methodologies are available for determining the oxygen isotope composition of minerals and rocks, these include laser-assisted fluorination, secondary ion mass spectrometry (SIMS)and UV laser ablation. In this review we focus on laser-assisted fluorination, which currently achieves the highest levels of precision available for oxygen isotope analysis. In particular, we examine how results using this method have furthered our understanding of early-formed differentiated meteorites. Due to its rapid reaction times and low blank levels, laser-assisted fluorination has now largely superseded the conventional externally-heated Ni “bomb” technique for bulk analysis. Unlike UV laser ablation and SIMS analysis, laser-assisted fluorination is not capable of focused spot analysis. While laser fluorination is now a mature technology, further analytical improvements are possible via refinements to the construction of sample chambers, clean-up lines and the use of ultra-high resolution mass spectrometers.
High-precision oxygen isotope analysis has proved to be a particularly powerful technique for investigating the formation and evolution of early-formed differentiated asteroids and has provided unique insights into the interrelationships between various groups of achondrites. A clear example of this is seenin samples that lie close to the terrestrial fractionation line (TFL). Based on the data from conventional oxygen isotope analysis, it was suggested that the main-group pallasites, the howardite eucrite diogenite suite (HEDs) and mesosiderites could all be derived from a single common parent body. However,high precision analysis demonstrates that main-group pallasites have a Δ17O composition that is fully resolvable from that of the HEDs and mesosiderites, indicating the involvement of at least two parent bodies. The range of Δ17O values exhibited by an achondrite group provides a useful means of assessing the extent to which their parent body underwent melting and isotopic homogenization. Oxygen isotope analysis can also highlight relationships between ungrouped achondrites and the more well-populated groups. A clear example of this is the proposed link between the evolved GRA 06128/9 meteorites and the brachinites.
The evidence from oxygen isotopes, in conjunction with that from other techniques, indicates that we have samples from approximately 110 asteroidal parent bodies (∼60 irons, ∼35 achondrites and stony-iron, and ∼15 chondrites) in our global meteorite collection. However, compared to the likely size of the original protoplanetary asteroid population, this is an extremely low value. In addition, almost all of the differentiated samples (achondrites, stony-iron and irons) are derived from parent bodies that were highly disrupted early in their evolution.
High-precision oxygen isotope analysis of achondrites provides some important insights into the origin of mass-independent variation in the early Solar System. In particular, the evidence from various primitive achondrite groups indicates that both the slope 1 (Y&R) and CCAM lines are of primordial significance. Δ17O differences between water ice and silicate-rich solids were probably the initial source of the slope 1 anomaly. These phases most likely acquired their isotopic composition as a result of UV photo-dissociation of CO that took place either in the early solar nebula or precursor giant molecular cloud. Such small-scale isotopic heterogeneities were propagated into larger-sized bodies, such as asteroids and planets, as a result of early Solar System processes, including dehydration, aqueous alteration,melting and collisional interactions
First measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814
International audienceWe present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in , which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0
- …