128 research outputs found
Bradykinin mediates cardiac preconditioning at a distance
Preconditioning the heart by brief coronary (CAO) or mesenteric artery
occlusion (MAO) can protect against damage during subsequent prolonged CAO
and reperfusion. The role of bradykinin (BK) in remote cardiac
preconditioning by MAO is investigated by antagonizing the BK B(2)
receptor [Hoechst 140 (HOE-140)] or simulating local BK release by
mesenteric intra-arterial infusion. Anesthetized male Wistar rats (n =
6-8) were treated with HOE-140 or saline before starting the
preconditioning protocol, CAO, MAO, or non-preconditioned control. Infarct
size related to risk area [ratio of infarct area to area at risk (IA/AR)]
was determined after 3 h of reperfusion following a 60-min CAO. IA/AR was
62 +/- 5% in controls and not affected by HOE-140 (58 +/- 6%). CAO as well
as MAO significantly protected the heart (IA/AR, 37 +/- 3 and 35 +/- 5%),
which was prevented by HOE-140 (IA/AR, 71 +/- 6 and 65 +/- 7%,
respectively). Brief intramesenteric BK infusion mimicked MAO (IA/AR, 26
+/- 3%). Pretreatment with hexamethonium could abolish this protection
(IA/AR, 67 +/- 4%). These data indicate an important role for BK in remote
preconditioning by MAO. Results support the hypothesis that remote
preconditioning acts through sensory nerve stimulation in the ischemic
organ
Different pharmacological responses of atrium and ventricle: Studies with human cardiac tissue
It has been recently reported that 5-hydroxytryptamine (5-HT) increases force of contraction in atrial tissue but not in ventricular tissue. In the present study with trabeculae obtained from non-diseased human hearts, we investigated whether this difference in the contractile response is specific for 5-HT or is also observed for other substances: calcitonin gene-related peptide (CGRP), angiotensin II, adenosine, somatostatin and acetyllcholine. CGRP (10−9 to 10−7 M) and angiotensin II (10−9 to 10−5 M) caused concentration-dependent increases in force of contraction in atrial trabeculae (up to36 ± 8%and42 ± 8% of the response to 10−5 M noradrenaline, respectively). Similar to 5-HT, no effects were observed with CGRP and angiotensin II in ventricular trabeculae. Adenosine (10−8 to 10−5 M) and somatostatin (10−8 to 10−6 M) caused concentration-dependent negative inotropic effects on baseline atrial contractility (−54 ± 17%and−51 ± 25%, respectively, but no response was found on baseline ventricular contractility. Adenosine, but not somatostatin, reduced force of contraction after pre-stimulation with 10−5 M noradrenaline in atrial tissue and, to a lesser extent, in ventricular tissue. Acethlcholine exhibited a biphasic concentration-response curve in the atrial tissue, consisting of an initial negative inotropic response (10−9 to 10−7 M, from 120 ± 41mg at baseline to48 ± 16mg at 10 −7 M, fol lowed by a positive inotropic response (10−6 to 10−3 M, from 48 ± 16 mg at 10−7 M to77 ± 55mg). On the baseline ventricular for foce of contraction, acetylcholine (10−9 to 10−4 M) induced only a positive inotropic effect, starting at 10−9 M (from 252 ± 65mg at baseline to353 ± 71mg at 10−4M). After pre-stimulation with 10−5 M noradrenaline, acethylcholine reduced force of contraction in both tissue at 10−3 M(atrium: −14 ± 4%,ventricle: −61 ± 5%). The data indicate that, in atrial tissue, force of contraction can be affected by either postive or negative inotropic agents. However, in ventricular tissue only positive inotropic effects could be detected. Since atrial and ventricular tissues display different responses to the above biogenic substances, a different mechnism of regulation of contractility seems feasible
Characterization of the positive and negative inotropic effects of acetylcholine in the human myocardium
In the human isolated myocardium, acetylcholine (10−9 to 10−3 M) elicited a biphasic inotropic effect (a decrease in the lower and an increase in the higher concentration range) in atrial and a positive inotropic effect in ventricular trabeculae. However, under conditions of raised contractility achieved by exposure to noradrenaline (10−5 M), only negative inotropic effects were observed in both atria and ventricles. Atropine (10−6 M), but not propranolol (10−6 M), antagonized both positive and negative inotropic effects of acetylcholine, thus showing that the responses were mediated by muscarinic acetylcholine receptors. The use of subtype selective muscarinic receptor antagonists (10−7 to 10−5 M), pirenzepine (M1 > M3 > M2), AF-DX 116 (11-({2-[(diethylamino)-methyl]-1-piperidyl}acetyl)-5,11-dihydro-6H-pyridol[2,3-b][1,4]benzodiazepine-6-one base; M2 > M1 > M and HHSiD (p-fluorohexahydro-siladifenidol hydrochloride; M3 ≥ M1 ⪢ M2) revealed that the negative inotropic effect of acetylcholine in atrial as well as the positive inotropic effect in ventricular trabeculae were best antagonized by AF-DX 116 and not by pirenzepine, suggesting the involvement of the muscarinic M2 receptor subtype, possibly linked to different second messenger systems. On the other hand, the positive inotropic effect of acetylcholine (10−6 to 10−3 M) in the atrial tissue, observed only in preparation with depressed contractility, was not effectively antagonized by either AF-DX 116 or HHSiD, but was significantly reduced by pirenzepine. Furthermore, the selective muscarinic M1 receptor agonist McN-A-343 (4-(m-chlorophenylcarbamoyloxy)-2-butynyltrimethyl ammonium chloride; 10−9 to 10−3 M), which failed to significantly change the baseline contractility in either atrial or ventricular trabeculae, produced a positive inotropic effect in atrial preparations when contractility had been depressed by prior treatment with acetylcholine (10−9 to 10−7 M). This effect of McN-A-343 was effectively antagonized by pirenzepine (10−5 M). These data show that, besides the muscarinic M2 receptor mediating both negative (atria) and positive (ventricle) inotropic effects, muscarinic M1 receptors, capable of reversing depressed atrial contractility, are present in the human heart
The effects of exercise training on heart, brain and behavior, in the isoproterenol-induced cardiac infarct model in middle-aged female rats
Women with cardiovascular disease may be more susceptible to concomitant mental health problems, such as depression and cognitive decline. Exercise training has beneficial effects on the cardiovascular system as well as on mental functions. Aim of the present study was to study the effects of exercise training on heart, brain and behavior in the isoproterenol (ISO) model in middle-aged female rats. Twelve months old female Wistar rats were submitted to ISO injections (70Â mg/kg s.c., on two consecutive days) or received saline. One week later, rats were assigned to either exercise training (treadmill running) or control handling for five weeks. During the last 7Â days, tests were performed regarding depressive-like behavior and cognitive function. Then, rats were sacrificed and heart and brains were dissected for (immuno)histochemistry. ISO-induced cardiac effects were eminent from cardiac fibrosis and declined cardiac function. Exercise training reversed cardiac damage and partly restored ISO-induced cardiac dysfunction. However, ISO treatment could not be associated with neuroinflammation, nor impaired hippocampal neurogenesis or neuronal function. Accordingly, no cognitive impairment or depressive-like behavior were observed. Actually, hippocampal microglia hyper-ramification was observed after ISO. Exercise left neuroinflammation and behavior merely unaltered, and even reduced neuronal function. Our data indicated that the cardiac damage after ISO in middle-aged female rats, and the subsequent beneficial effects of five weeks exercise training on the heart, were not reflected in changes in the brain nor in altered behavior
The efficacy of anti-inflammatory medication in postoperative cognitive decline: A meta-analysis
Objective: Post-operative cognitive decline is a surgical complication involving chronic impairments in different cognitive domains. Although the exact mechanisms behind postoperative cognitive decline are still unknown, there is increasing evidence for a key role of neuroinflammation. This meta-analysis aims to investigate the efficacy of anti-inflammatory treatment on postoperative cognitive decline. Participants and Methods: An electronic search was performed using PubMed, Psychinfo, EmBase, Cochrane Database of Systematic Reviews and clinicaltrial.gov (until November 2019). No year or language restrictions were applied. Only randomized, double-blind, placebocontrolled studies that investigated clinical outcome in adult patients who underwent surgery under general anaesthesia (except brain surgery) were included. The search yielded 574 papers, of which nineteen fulfilled the inclusion criteria. Results: The current meta-analysis found a significant effect of different anti-inflammatory agents on the incidence of POCD (OR=0.67, p=0.010). Administration of COX-2 inhibitors (OR=0.31, p<0.0001), ketamine (OR=0.44, p=0.38) and lidocaine (OR=0.79, p=0.33) showed better results than placebo in a meta-analysis of at least two studies. Erythromycin (OR=0.14, p=0.006), erythropoietin (OR=0.15, p=0.07) and dexmedetomidine (OR=0.58, p=0.03) were significant in single studies. No beneficial effects on cognition were found for magnesium, 17βestradiol, dexamethasone and melatonin. Conclusion: The results of this meta-analysis provide evidence for a potential efficacy of anti-inflammatory agents on POCD, but further research is necessary to determine which agents are most appropriate for clinical application
Sex dimorphism in isoproterenol-induced cardiac damage associated neuroinflammation and behavior in old rats
Acute cardiac damage can be induced by isoproterenol injections in animals. The associated inflammatory response could be reflected in the brain as neuroinflammation, with potential consequences for brain function and behavior. Although cardiac responses are reported age and sex-related, for neuroinflammation and brain function this is virtually unknown. Therefore, cardiac damage and its consequences for neuroinflammation, brain function and behavior were compared in aged male and female rats. Wistar rats of 24 months of age were treated with isoproterenol (ISO, twice s.c.) or saline. Four weeks after injections, exploratory behavior and short-term memory were tested. Then, rats were sacrificed. Hearts were collected to measure cardiac damage. Brain tissue was collected to obtain measures of neuroinflammation and brain function. In male-, but not in female rats, ISO induced significant cardiac damage. Accordingly, mortality was higher in males than in females. Baseline hippocampal microglia activity was lower in females, while ISO induced neuroinflammation in both sexes, Hippocampal brain-derived neurotrophic factor expression appeared lower in females, without effects of ISO. In the open field test, ISO-treated males, but not females, displayed anxiety-like behavior. No effects of ISO were observed on short-term memory in either sex. In conclusion, sex dimorphism in effects of ISO was observed for cardiac damage and open field behavior. However, these effects could not be related to differences in hippocampal neuroinflammation or neuronal function
- …