3,321 research outputs found
X-ray scattering study of two length scales in the critical fluctuations of CuGeO3
The critical fluctuations of CuGeO have been measured by synchrotron
x-ray scattering, and two length scales are clearly observed. The ratio between
the two length scales is found to be significantly different along the
axis, with the axis along the surface normal direction. We believe that
such a directional preference is a clear sign that surface random strains,
especially those caused by dislocations, are the origin of the long length
scale fluctuations.Comment: 5 pages, 4 figures, submitted to PR
Neutron Scattering Study of Temperature-Concentration Phase Diagram of (Cu1-xMgx)GeO3
In doped CuGeO3 systems, such as (Cu1-xZnx)GeO3 and Cu(Ge1-xSix)O3, the
spin-Peierls (SP) ordering (T<Tsp) coexists with the antiferromagnetic (AF)
phase (T<TN<Tsp). Tsp decreases while TN increases with increasing x in low
doping region. For higher x, however, the SP state disappears and only the AF
state remains. These features are common for all the doped CuGeO3 systems so
far studied, indicating the existence of universal T-x phase diagram. Recently,
Masuda et al. carried out comprehensive magnetic susceptibility (chi)
measurements of (Cu1-xMgx)GeO3, in which doping concentration can be controlled
significantly better than the Zn doped systems. They found that TN suddenly
jumps from 3.43 to 3.98K at the critical concentration xc sim 0.023 and that a
drop in chi corresponding to the SP ordering also disappears at x>xc. They thus
concluded that there is a compositional phase boundary between two distinct
magnetic phases. To clarify the nature of two phases, we performed
neutron-scattering measurements on (Cu1-xMgx)GeO3 single crystals with various
x. Analysis of the data at fixed temperature points as a function of doping
concentration has revealed sudden changes of order parameters at the critical
concentration xc=0.027 +- 0.001. At finite temperatures below TN, the drastic
increase of the AF moment takes place at xc. The spin-Peierls order parameter
delta associated with lattice dimerization shows a precipitous decrease at all
temperature below Tsp. However, it goes to zero above xc only at the low
temperature limit.Comment: 9 pages, 9 figure
Structural Critical Scattering Study of Mg-Doped CuGeO3
We report a synchrotron x-ray scattering study of the diluted spin-Peierls
(SP) material Cu_(1-x)Mg_xGeO_3. We find that for x>0 the temperature T_m at
which the spin gap is established is significantly higher than the temperature
T_s at which the SP dimerization attains long-range order. The latter is
observed only for xx_c the SP correlation length
quickly decreases with increasing x. We argue that impurity-induced competing
interactions play a central role in these phenomena.Comment: 5 pages, 4 embedded eps figures, to appear in PR
On the Incommensurate Phase of Pure and Doped Spin-Peierls System CuGeO_3
Phases and phase transitions in pure and doped spin-Peierls system CuGeO_3
are considered on the basis of a Landau-theory. In particular we discuss the
critical behaviour, the soliton width and the low temperature specific heat of
the incommensurate phase. We show, that dilution leads always to the
destruction of long range order in this phase, which is replaced by an
algebraic decay of correlations if the disorder is weak.Comment: 4 pages revtex, no figure
X-ray Investigation of the Magneto-elastic Instability of alpha'-NaV2O5
We present an X-ray diffuse scattering study of the pretransitional
structural fluctuations of the magneto-elastic transition in alpha'-NaV2O5.
This transition is characterized by the appearance below Tsp~35K of satellite
reflections at the reduced wave vector (1/2,1/2,1/4). A large regime of
structural fluctuations is measured up to 90 K. These fluctuations are three
dimensional between Tsp and ~50K and quasi-one dimensional above ~60K. At 40 K
the anisotropy ratio is found to be (xib :xia :xic)= (3.8 : 1.8 : 1), which
reveals the importance of transverse interactions in the stabilization of the
low temperature phase. We discuss our results within the framework of recent
theories dealing with the simultaneous occurrence of a charge ordering, a spin
gap and a lattice distortion in this intriguing compound.Comment: Accepted in PRB Rapid.comm. Corrected typos, references added,
figures improve
QCD at small x and nucleus-nucleus collisions
At large collision energy sqrt(s) and relatively low momentum transfer Q, one
expects a new regime of Quantum Chromo-Dynamics (QCD) known as "saturation".
This kinematical range is characterized by a very large occupation number for
gluons inside hadrons and nuclei; this is the region where higher twist
contributions are as large as the leading twist contributions incorporated in
collinear factorization. In this talk, I discuss the onset of and dynamics in
the saturation regime, some of its experimental signatures, and its
implications for the early stages of Heavy Ion Collisions.Comment: Plenary talk given at QM2006, Shanghai, November 2006. 8 pages, 8
figure
Differential (2+1) Jet Event Rates and Determination of alpha_s in Deep Inelastic Scattering at HERA
Events with a (2+1) jet topology in deep-inelastic scattering at HERA are
studied in the kinematic range 200 < Q^2< 10,000 GeV^2. The rate of (2+1) jet
events has been determined with the modified JADE jet algorithm as a function
of the jet resolution parameter and is compared with the predictions of Monte
Carlo models. In addition, the event rate is corrected for both hadronization
and detector effects and is compared with next-to-leading order QCD
calculations. A value of the strong coupling constant of alpha_s(M_Z^2)=
0.118+- 0.002 (stat.)^(+0.007)_(-0.008) (syst.)^(+0.007)_(-0.006) (theory) is
extracted. The systematic error includes uncertainties in the calorimeter
energy calibration, in the description of the data by current Monte Carlo
models, and in the knowledge of the parton densities. The theoretical error is
dominated by the renormalization scale ambiguity.Comment: 25 pages, 6 figures, 3 tables, submitted to Eur. Phys.
Measurements of Transverse Energy Flow in Deep-Inelastic Scattering at HERA
Measurements of transverse energy flow are presented for neutral current
deep-inelastic scattering events produced in positron-proton collisions at
HERA. The kinematic range covers squared momentum transfers Q^2 from 3.2 to
2,200 GeV^2, the Bjorken scaling variable x from 8.10^{-5} to 0.11 and the
hadronic mass W from 66 to 233 GeV. The transverse energy flow is measured in
the hadronic centre of mass frame and is studied as a function of Q^2, x, W and
pseudorapidity. A comparison is made with QCD based models. The behaviour of
the mean transverse energy in the central pseudorapidity region and an interval
corresponding to the photon fragmentation region are analysed as a function of
Q^2 and W.Comment: 26 pages, 8 figures, submitted to Eur. Phys.
- …